교량 구조물 손상탐지를 위한 Open Set Recognition 기반 다중손상 인식 모델 개발
Currently, the number of bridge structures in Korea is continuously increasing and enlarged, and the number of old bridges that have been in service for more than 30 years is also steadily increasing. Bridge aging is being treated as a serious social problem not only in Korea but also around the wor...
Saved in:
Published in | KSCE Journal of Civil and Environmental Engineering Research Vol. 42; no. 1; pp. 117 - 126 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | Korean |
Published |
대한토목학회
01.02.2022
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Currently, the number of bridge structures in Korea is continuously increasing and enlarged, and the number of old bridges that have been in service for more than 30 years is also steadily increasing. Bridge aging is being treated as a serious social problem not only in Korea but also around the world, and the existing manpower-centered inspection method is revealing its limitations. Recently, various bridge damage detection studies using deep learning-based image processing algorithms have been conducted, but due to the limitations of the bridge damage data set, most of the bridge damage detection studies are mainly limited to one type of crack, which is also based on a close set classification model. As a detection method, when applied to an actual bridge image, a serious misrecognition problem may occur due to input images of an unknown class such as a background or other objects. In this study, five types of bridge damage including crack were defined and a data set was built, trained as a deep learning model, and an open set recognition-based bridge multiple damage recognition model applied with OpenMax algorithm was constructed. And after performing classification and recognition performance evaluation on the open set including untrained images, the results were analyzed. 현재 국내 교량 구조물은 지속적으로 증가 및 대형화되고 있으며 그에 따라 공용된 지 30년 이상 된 노후 교량도 꾸준히 늘어나고 있다. 교량 노후화 문제는 국내뿐 아니라 전 세계적으로도 심각한 사회 문제로 다루어지고 있으며, 기존 인력 위주의 점검 방식은 그 한계점을 드러내고 있다. 최근 들어 딥러닝 기반의 영상처리 알고리즘을 활용한 각종 교량 손상탐지 연구가 이루어지고 있지만 교량 손상 데이터 세트의 한계로 인하여 주로 균열 1종에 국한된 교량 손상탐지 연구가 대부분이고, 이 또한 Close set 분류모델 기반 탐지방식으로서 실제 교량 촬영 영상에 적용했을 시 배경이나 기타 객체 등 학습되지 않은 클래스의 입력 이미지들로 인하여 심각한 오인식 문제가 발생할 수 있다. 본 연구에서는 균열 포함 5종의 교량 손상을 정의 및 데이터 세트를 구축해서 딥러닝 모델로 학습시키고, OpenMax 알고리즘을 적용한 Open set 인식 기반 교량 다중손상 인식 모델을 개발했다. 그리고 학습되지 않은 이미지들을 포함하고 있는 Open set에 대한 분류 및 인식 성능평가를 수행한 후 그 결과를 분석했다. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO202208933304622 http://kscejournal.or.kr/jksce/XmlViewer/f411909 |
ISSN: | 1015-6348 2799-9629 |
DOI: | 10.12652/Ksce.2022.42.1.0117 |