텍스트 요약을 위한 어텐션 기반 BART 모델 미세조정

Automatically summarizing long sentences is an important technique. The BART model is one of the widely used models in the summarization task. In general, in order to generate a summarization model of a specific domain, fine-tuning is performed by re-training a language model trained on a large data...

Full description

Saved in:
Bibliographic Details
Published in한국정보통신학회논문지 Vol. 26; no. 12; pp. 1769 - 1776
Main Authors 안영필(Young-Pill Ahn), 박현준(Hyun-Jun Park)
Format Journal Article
LanguageKorean
Published 한국정보통신학회 2022
Subjects
Online AccessGet full text
ISSN2234-4772
2288-4165

Cover

More Information
Summary:Automatically summarizing long sentences is an important technique. The BART model is one of the widely used models in the summarization task. In general, in order to generate a summarization model of a specific domain, fine-tuning is performed by re-training a language model trained on a large dataset to fit the domain. The fine-tuning is usually done by changing the number of nodes in the last fully connected layer. However, in this paper, we propose a fine-tuning method by adding an attention layer, which has been recently applied to various models and shows good performance. In order to evaluate the performance of the proposed method, various experiments were conducted, such as accumulating layers deeper, fine-tuning without skip connections during the fine tuning process, and so on. As a result, the BART model using two attention layers with skip connection shows the best score. 긴 문장으로 이루어진 글을 자동으로 요약하는 것은 중요한 기술이다. BART 모델은 이러한 요약 문제에서 좋은 성능을 보여주고 널리 사용되고 있는 모델 중 하나이다. 일반적으로 특정 도메인의 요약 모델을 생성하기 위해서는 큰 데이터세트를 학습한 언어 모델을 그 도메인에 맞게 다시 학습하는 미세조정 작업을 수행한다. 이러한 미세조정은 일반적으로 마지막 전 연결 계층의 노드 수를 변경하는 방식으로 진행된다. 하지만 본 논문에서는 최근 다양한 모델에 적용되어 좋은 성능을 보여주고 있는 어텐션 계층을 추가하는 방법으로 미세조정하는 방법을 제안한다. 제안하는 방법의 성능을 평가하기 위해 미세조정 과정에서 층을 더 깊게 쌓기, 스킵 연결 없는 미세조정 등 다양한 실험을 진행하였다. BART 언어 모델에 스킵 연결을 가진 2개의 어텐션 계층을 추가하였을 때 가장 좋은 성능을 보였다.
Bibliography:KISTI1.1003/JNL.JAKO202203255718375
ISSN:2234-4772
2288-4165