Fusarium Species from Sorghum in Thailand
Sorghum is the fifth most important cereal worldwide, spreading from Africa throughout the world. It is particularly important in the semi-arid tropics due to its drought tolerance, and when cultivated in Southeast Asia commonly occurs as a second crop during the dry season. We recovered Fusarium fr...
Saved in:
Published in | The plant pathology journal Vol. 35; no. 4; pp. 301 - 312 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | Korean |
Published |
한국식물병리학회
31.08.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Sorghum is the fifth most important cereal worldwide, spreading from Africa throughout the world. It is particularly important in the semi-arid tropics due to its drought tolerance, and when cultivated in Southeast Asia commonly occurs as a second crop during the dry season. We recovered Fusarium from sorghum in Thailand and found F. proliferatum, F. thapsinum and F. verticillioides most frequently, and intermittent isolates of F. sacchari and F. beomiforme. The relatively high frequencies of F. proliferatum and F. verticillioides, suggest mycotoxin contamination, particularly fumonisins and moniliformin, should be evaluated. Genetic variation within the three commonly recovered species was characterized with vegetative compatibility, mating type, Amplified Fragment Length Polymorphisms (AFLPs), and female fertility. Effective population number ($N_e$) was highest for F. verticillioides and lowest for F. thapsinum with values based on mating type allele frequencies higher than those based on female fertility. Based on AFLP genetic variation, the F. thapsinum populations were the most closely related, the F. verticillioides populations were the most distantly related, and the F. proliferatum populations were in an intermediate position. The genetic variation observed could result if F. thapsinum is introduced primarily with seed, while F. proliferatum and F. verticillioides could arrive with seed or be carried over from previous crops, e.g., rice or maize, which sorghum is following. Confirmation of species transmission patterns is needed to understand the agricultural systems in which sorghum is grown in Southeast Asia, which are quite different from the systems found in Africa, Australia, India and the Americas. |
---|---|
Bibliography: | KISTI1.1003/JNL.JAKO201923233204105 |
ISSN: | 1598-2254 2093-9280 |