준정적 변형률속도에서 저망간 쌍정유기소성강의 기계적 특성에 미치는 변형쌍정의 영향

The high Mn (≥25 wt%) TWIP steels with low stacking fault energy are currently one of the most attractive materials in the automotive industry due to their unique combination of high strength and good ductility. However, the conventional manufacturing processes have many problems with alloying high...

Full description

Saved in:
Bibliographic Details
Published in대한금속·재료학회지, 52(1) Vol. 52; no. 1; pp. 1 - 9
Main Authors 송병환, Byeong Hwan Song, 김진용, Jin Young Kim, 정승훈, Seung Hun Jeong, 최일동, Il Dong Choi, 이영국, Young Kook Lee
Format Journal Article
LanguageKorean
Published 대한금속재료학회 30.01.2014
대한금속·재료학회
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The high Mn (≥25 wt%) TWIP steels with low stacking fault energy are currently one of the most attractive materials in the automotive industry due to their unique combination of high strength and good ductility. However, the conventional manufacturing processes have many problems with alloying high Mn. Therefore, many efforts are being made to reduce the Mn content, but the steels could not have an appropriate stacking fault energy (SFE) for twinning with decreasing Mn content. In this study, TWIP steel with lean Mn less than 20 wt% (Fe-18Mn-1.5Al-0.6C) was made. Tensile properties of the lean 18 Mn TWIP steel were measured at a strain rate range of 10.4s.1≤ ε. ≤10.1s.1 to investigate the correlation between twinning behavior and stress at various strain rates. The lean 18 Mn TWIP steel possessed an austenite single phase before and after tensile tests at room temperature and exhibited a total elongation of about 60% and ultimate tensile strength of about 1000 MPa by strain-induced twinning. The stress decreased with an increasing strain rate, showing a negative strain rate sensitivity. That was because the volume fraction of twinned grains decreased with an increasing strain rate at the same strain. Stress was directly related to the volume fraction of twinned grains at quasi-static strain rates.
Bibliography:The Korean Institute of Metals and Materials
http://210.101.116.102/journal_korea/detail_01.asp?a_key=3184743
G704-000085.2014.52.1.011
ISSN:1738-8228
2288-8241
DOI:10.3365/KJMM.2014.52.1.001