철계 반비정질 합금 분말과 VC 분말을 고에너지 전자빔으로 투사하여 제조된 표면복합재료의 미세조직, 경도, 파괴인성

In this study, surface composites were fabricated with Fe-based amorphous alloy powders and VC powders by high-energy electron beam irradiation, and the correlation of their microstructure with hardness and fracture toughness was investigated. Mixture of Fe-based metamorphic powders and VC powders w...

Full description

Saved in:
Bibliographic Details
Published in대한금속·재료학회지, 46(10) Vol. 46; no. 10; pp. 634 - 645
Main Authors 남덕현, Duk Hyun Nam, 도정현, Jung Hyun Do, 이성학, Sung Hak Lee
Format Journal Article
LanguageKorean
Published 대한금속재료학회 22.10.2008
대한금속·재료학회
Subjects
Online AccessGet full text
ISSN1738-8228
2288-8241

Cover

More Information
Summary:In this study, surface composites were fabricated with Fe-based amorphous alloy powders and VC powders by high-energy electron beam irradiation, and the correlation of their microstructure with hardness and fracture toughness was investigated. Mixture of Fe-based metamorphic powders and VC powders were deposited on a plain carbon steel substrate, and then electron beam was irradiated on these powders without flux to fabricate surface composites. The composite layers of 1.3~1.8 mm in thickness were homogeneously formed without defects and contained a large amount (up to 47 vol.%) of hard Cr2B and V8C7 crystalline particles precipitated in the solidification cell region and austenite matrix, respectively. The hardness of the surface composites was directly influenced by hard Cr2B and V8C7 particles, and thus was about 2 to 4 times greater than that of the steel substrate. Observation of the microfracture process and measurement of fracture toughness of the surface composites indicated that the fracture toughness increased with increasing additional volume fraction of V8C7 particles because V8C7 particles effectively played a role in blocking the crack propagation along the solidification cell region heavily populated with Cr2B particles. Particularly in the surface composite fabricated with Fe-based metamorphic powders and 30 % of VC powders, the hardness and fracture toughness were twice higher than those of the surface composite fabricated without mixing of VC powders.
Bibliography:The Korean Institute of Metals and Materials
G704-000085.2008.46.10.001
ISSN:1738-8228
2288-8241