국토 교통 공공데이터 기반 블랙아이스 발생 구간 예측 모델

매년 동절기 블랙아이스(Black Ice)로 인한 사고는 빈번하게 발생하고 있으며, 치사율은 다른 교통사고에 비해 매우 높다. 따라서 블랙아이스 발생 구간을 사전에 예측하기 위한 체계화된 방법이 필요하다. 이에 본 논문에서는 이질(heterogeneous)·다형(diverse)의 데이터를 활용한 블랙아이스 발생 구간 예측 모델을 제안한다. 이를 위해 국토 교통 공공데이터와 기상 공공데이터 42종의 12,574,630건을 수집하여, 결측값을 처리하고 정규화하는 등의 전처리 과정을 수행한 뒤 최종 약 60만여 건의 정제 데이터셋을 구축...

Full description

Saved in:
Bibliographic Details
Published in정보처리학회 논문지 (KTSDE) Vol. 10; no. 7; pp. 257 - 262
Main Authors 나정호, Jeong Ho Na, 윤성호, Sung-ho Yoon, 오효정, Hyo-jung Oh
Format Journal Article
LanguageKorean
Published 한국정보처리학회 31.07.2021
Subjects
Online AccessGet full text
ISSN2287-5905

Cover

Loading…
More Information
Summary:매년 동절기 블랙아이스(Black Ice)로 인한 사고는 빈번하게 발생하고 있으며, 치사율은 다른 교통사고에 비해 매우 높다. 따라서 블랙아이스 발생 구간을 사전에 예측하기 위한 체계화된 방법이 필요하다. 이에 본 논문에서는 이질(heterogeneous)·다형(diverse)의 데이터를 활용한 블랙아이스 발생 구간 예측 모델을 제안한다. 이를 위해 국토 교통 공공데이터와 기상 공공데이터 42종의 12,574,630건을 수집하여, 결측값을 처리하고 정규화하는 등의 전처리 과정을 수행한 뒤 최종 약 60만여 건의 정제 데이터셋을 구축하였다. 수집된 요인들의 상관관계를 분석하여 블랙아이스 예측에 유효한 영향을 주는 21개 요인을 선별, 다양한 학습모델을 조합하는 방법을 통해 블랙아이스 발생 예측 모델을 구현하였다. 이를 통해 개발된 예측 모델은 최종적으로 노선별 블랙아이스 위험지수 도출에 사용되어 블랙아이스 발생 경고 서비스를 위한 사전 연구로 활용될 것이다. Accidents caused by black ice occur frequently every winter, and the fatality rate is very high compared to other traffic accidents. Therefore, a systematic method is needed to predict the black ice formation before accidents. In this paper, we proposed a black ice prediction model based on heterogenous and multi-type data. To this end, 12,574,630 cases of 46 types of land, infrastructure, transport public data and meteorological public data were collected. Subsequently, the data cleansing process including missing value detection and normalization was followed by the establishment of approximately 600,000 refined datasets. We analyzed the correlation of 42 factors collected to predict the occurrence of black ice by selecting only 21 factors that have a valid effect on black ice prediction. The prediction model developed through this will eventually be used to derive the route-specific black ice risk index, which will be utilized as a preliminary study for black ice warning alart services.
Bibliography:Korea Information Processing Society
KISTI1.1003/JNL.JAKO202123162100726
ISSN:2287-5905