도심지 도로 지하공동 탐지를 위한 딥러닝 기반 GPR 자료 해석 기법

도심지 도로에서의 지하공동 붕괴로 인한 지반침하 문제는 인명 및 재산 피해로 이어질 수 있기 때문에 이를 예방하기 위해서는 사전에 지하공동을 탐지하고 복구하는 과정이 필요하다. 지하공동 탐지는 주로 지표투과레이더(ground penetrating radar, GPR) 탐사를 통해 이루어지는데, 방대한 탐사 자료로 인해 해석에 많은 시간이 소모되고 전문가의 숙련도와 주관에 따라 해석 결과가 달라질 수 있다. 이러한 문제를 해결하기 위해 GPR 자료 해석 자동화 및 정량화 기법들이 연구되어 왔으며, 최근에는 딥러닝 기반의 해석 기법들이...

Full description

Saved in:
Bibliographic Details
Published in지구물리와 물리탐사 Vol. 25; no. 4; pp. 189 - 200
Main Authors 최병훈, Byunghoon Choi, 편석준, Sukjoon Pyun, 최우창, Woochang Choi, 조철현, Churl-hyun Jo, 윤진성, Jinsung Yoon
Format Journal Article
LanguageKorean
Published 한국지구물리·물리탐사학회 30.11.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:도심지 도로에서의 지하공동 붕괴로 인한 지반침하 문제는 인명 및 재산 피해로 이어질 수 있기 때문에 이를 예방하기 위해서는 사전에 지하공동을 탐지하고 복구하는 과정이 필요하다. 지하공동 탐지는 주로 지표투과레이더(ground penetrating radar, GPR) 탐사를 통해 이루어지는데, 방대한 탐사 자료로 인해 해석에 많은 시간이 소모되고 전문가의 숙련도와 주관에 따라 해석 결과가 달라질 수 있다. 이러한 문제를 해결하기 위해 GPR 자료 해석 자동화 및 정량화 기법들이 연구되어 왔으며, 최근에는 딥러닝 기반의 해석 기법들이 많이 활용되고 있다. 이 연구에서는 딥러닝 기반의 GPR 자료해석 기법 중 쌍곡선(hyperbola) 신호를 탐지하는 과정에 대해 기존 연구에서 개발된 기법을 단계별로 실증 예제를 통해 설명하였다. 먼저, 쌍곡선 신호를 자동으로 탐지하기 위해서 딥러닝 기반 YOLOv3 객체탐지 기법을 적용했다. 다음으로는 column-connection clustering (C3) 알고리즘을 통해 쌍곡선 신호만을 추출하였고, 최종적으로 회귀분석을 통해 지하공동의 수평위치를 결정했다. YOLOv3 객체탐지 기법을 이용한 쌍곡선 신호 탐지 성능은 AP50 기준으로 정밀도 84%, 재현율 92%를 달성했다. 지하공동 수평위치 정확도는 4개 샘플에 대해 실제 위치와 약 0.12 ~ 0.36 m 정도의 차이를 보였다. 이를 통해 지하공동에 의해 나타나는 쌍곡선 신호에 대한 딥러닝 기반 탐지 기법의 적용성을 확인할 수 있었다. Ground subsidence on urban roads is a social issue that can lead to human and property damages. Therefore, it is crucial to detect underground cavities in advance and repair them. Underground cavity detection is mainly performed using ground penetrating radar (GPR) surveys. This process is time-consuming, as a massive amount of GPR data needs to be interpreted, and the results vary depending on the skills and subjectivity of experts. To address these problems, researchers have studied automation and quantification techniques for GPR data interpretation, and recent studies have focused on deep learning-based interpretation techniques. In this study, we described a hyperbolic event detection process based on deep learning for GPR data interpretation. To demonstrate this process, we implemented a series of algorithms introduced in the preexisting research step by step. First, a deep learning-based YOLOv3 object detection model was applied to automatically detect hyperbolic signals. Subsequently, only hyperbolic signals were extracted using the column-connection clustering (C3) algorithm. Finally, the horizontal locations of the underground cavities were determined using regression analysis. The hyperbolic event detection using the YOLOv3 object detection technique achieved 84% precision and a recall score of 92% based on AP50. The predicted horizontal locations of the four underground cavities were approximately 0.12 ~ 0.36 m away from their actual locations. Thus, we confirmed that the existing deep learning-based interpretation technique is reliable with regard to detecting the hyperbolic patterns indicating underground cavities.
Bibliography:KOREAN SOCIETY OF EXPLORATION GEOPHYSICISTS
KISTI1.1003/JNL.JAKO202204157633914
ISSN:1229-1064
2384-051X