Induction of IFN-β through TLR-3- and RIG-I-Mediated Signaling Pathways in Canine Respiratory Epithelial Cells Infected with H3N2 Canine Influenza Virus

Canine influenza virus (CIV) induces acute respiratory disease in dogs. In this study, we aimed to determine the signaling pathways leading to the induction of IFN-β in a canine respiratory epithelial cell line (KU-CBE) infected with the H3N2 subtype of CIV. Small interfering RNAs (siRNAs) specific...

Full description

Saved in:
Bibliographic Details
Published inJournal of microbiology and biotechnology Vol. 31; no. 7; pp. 942 - 948
Main Authors Park, Woo-Jung, Han, Sang-Hoon, Kim, Dong-Hwi, Song, Young-Jo, Lee, Joong-Bok, Park, Seung-Yong, Song, Chang-Seon, Lee, Sang-Won, Choi, In-Soo
Format Journal Article
LanguageKorean
Published 한국미생물생명공학회 31.07.2021
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Canine influenza virus (CIV) induces acute respiratory disease in dogs. In this study, we aimed to determine the signaling pathways leading to the induction of IFN-β in a canine respiratory epithelial cell line (KU-CBE) infected with the H3N2 subtype of CIV. Small interfering RNAs (siRNAs) specific to pattern recognition receptors (PRRs) and transcription factors were used to block the IFN-β induction signals in H3N2 CIV-infected KU-CBE cells. Among the PRRs, only the TLR3 and RIG-I expression levels significantly (p < 0.001) increased in CIV-infected cells. Following transfection with siRNA specific to TLR3 (siTLR3) or RIG-I (siRIG-I), the mRNA expression levels of IFN-β significantly (p < 0.001) decreased, and the protein expression of IFN-β also decreased in infected cells. In addition, co-transfection with both siTLR3 and siRIG-I significantly reduced IRF3 (p < 0.001) and IFN-β (p < 0.001) mRNA levels. Moreover, the protein concentration of IFN-β was significantly (p < 0.01) lower in cells co-transfected with both siTLR3 and siRIG-I than in cells transfected with either siTLR3 or siRIG-I alone. Also, the antiviral protein MX1 was only expressed in KU-CBE cells infected with CIV or treated with IFN-β or IFN-α. Thus, we speculate that IFN-β further induces MX1 expression, which might suppress CIV replication. Taken together, these data indicate that TLR3 and RIG-I synergistically induce IFN-β expression via the activation of IRF3, and the produced IFN-β further induces the production of MX1, which would suppress CIV replication in CIV-infected cells.
Bibliography:The Korean Society for Applied Microbiology
KISTI1.1003/JNL.JAKO202125141218141
ISSN:1017-7825
1738-8872