Biosynthesis of Apigenin Glucosides in Engineered Corynebacterium glutamicum

Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the applicatio...

Full description

Saved in:
Bibliographic Details
Published inJournal of microbiology and biotechnology Vol. 34; no. 5; pp. 1154 - 1163
Main Authors Obed Jackson Amoah, Samir Bahadur Thapa, Su Yeong Ma, Hue Thi Nguyen, Morshed Md Zakaria, Jae Kyung Sohng
Format Journal Article
LanguageKorean
Published 한국미생물생명공학회 31.05.2024
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Glucosylation is a well-known approach to improve the solubility, pharmacological, and biological properties of flavonoids, making flavonoid glucosides a target for large-scale biosynthesis. However, the low yield of products coupled with the requirement of expensive UDP-sugars limits the application of enzymatic systems for large-scale. C. glutamicum is a Gram-positive and generally regarded as safe (GRAS) bacteria frequently employed for the large-scale production of amino acids and biofuels. Due to the versatility of its cell factory system and its non-endotoxin producing properties, it has become an attractive system for the industrial-scale biosynthesis of alternate products. Here, we explored the cell factory of C. glutamicum for efficient glucosylation of flavonoids using apigenin as a model flavonoid, with the heterologous expression of a promiscuous glycosyltransferase, YdhE from Bacillus licheniformis and the endogenous overexpression of C. glutamicum genes galU1 encoding UDP-glucose pyrophosphorylase and pgm encoding phosphoglucomutase involved in the synthesis of UDP-glucose to create a C. glutamicum cell factory system capable of efficiently glucosylation apigenin with a high yield of glucosides production. Consequently, the production of various apigenin glucosides was controlled under different temperatures yielding almost 4.2 mM of APG1(apigenin-4β-O-β-glucoside) at 25℃, and 0.6 mM of APG2 (apigenin-7-O-β-glucoside), 1.7 mM of APG3 (apigenin-4β,7-O-β-diglucoside) and 2.1 mM of APG4 (apigenin- 4β,5-O-β-diglucoside) after 40 h of incubation with the supplementation of 5 mM of apigenin and 37℃. The cost-effective developed system could be used to modify a wide range of plant secondary metabolites with increased pharmacokinetic activities on a large scale without the use of expensive UDP-sugars.
Bibliography:The Korean Society for Applied Microbiology
KISTI1.1003/JNL.JAKO202423343337410
ISSN:1017-7825
1738-8872