시계열 모형과 기상변수를 활용한 태양광 발전량 예측 연구

최근 정부의 친환경 정책에 따라 태양광 발전 설비가 지속적으로 증가하고 있다. 태양광 발전량은 에너지원인 태양의 특성상 계절에 따라 하루 중 발전이 이루어지는 시간이 일정하지 않다. 이러한 특성으로 인해 태양광 발전량 예측에서는 연속된 시간간격으로 수집된 자료에 적용할 수 있는 시계열 모형 적용에 어려움이 있다. 본 논문에서 제안하는 방법은 연속된 시간자료를 각 시간대 별로 분리, 재구성하여 24개의 (1시{24시) 일별 자료 형태로 예측에 활용하는 방법이다. 강원도 영암 태양광 발전소의 시간별 발전량 자료를 공공데이터포털에서 수집...

Full description

Saved in:
Bibliographic Details
Published inŬngyong tʻonggye yŏnʼgu Vol. 31; no. 1; pp. 139 - 153
Main Authors 이근호, Keunho Lee, 손흥구, Heung-gu Son, 김삼용, Sahm Kim
Format Journal Article
LanguageKorean
Published 한국통계학회 2018
Subjects
Online AccessGet full text
ISSN1225-066X
2383-5818

Cover

More Information
Summary:최근 정부의 친환경 정책에 따라 태양광 발전 설비가 지속적으로 증가하고 있다. 태양광 발전량은 에너지원인 태양의 특성상 계절에 따라 하루 중 발전이 이루어지는 시간이 일정하지 않다. 이러한 특성으로 인해 태양광 발전량 예측에서는 연속된 시간간격으로 수집된 자료에 적용할 수 있는 시계열 모형 적용에 어려움이 있다. 본 논문에서 제안하는 방법은 연속된 시간자료를 각 시간대 별로 분리, 재구성하여 24개의 (1시{24시) 일별 자료 형태로 예측에 활용하는 방법이다. 강원도 영암 태양광 발전소의 시간별 발전량 자료를 공공데이터포털에서 수집하여 연구하였다. 기존방법과 제안된 방법의 성능차이를 비교하기 위해 ARIMAX, 신경망(neural network model) 모형을 동일한 모형과 변수를 가지는 환경에서 성능차이를 확인하였다. This paper investigates solar power forecasting based on several time series models. First, we consider weather variables that inuence forecasting procedures as well as compare forecasting accuracies between time series models such as ARIMAX, Holt-Winters and Artificial Neural Network (ANN) models. The results show that ten models forecasting 24hour data have better performance than single models for 24 hours.
Bibliography:The Korean Statistical Society
KISTI1.1003/JNL.JAKO201809361757228
ISSN:1225-066X
2383-5818