카드뮴 반응용량 곡선에서의 기준용량 평가를 위한 베이지안 분석연구

본 논문에서는 카드뮴의 반응-용량 모형에 대한 베이지안 분석을 실시하고 기준용량에 대한 추정값들을 유도하고 비교한다. 이를 위하여 독성물질에 대한 용량반응곡선에서 많이 활용되는 두 가지 모형을 사용하고, 카드뮴의 독성연구에 관련한 기존의 문헌으로 수집된 자료에 대한 성별, 연령, 인종, study code 등과 같은 소집단 간의 개별적 형질을 반영할 수 있는 베이지안 메타분석 관점에서의 모형분석을 실시한다. 이러한 두 가지 모형에 대한 베이지안 분석을 위하여 WinBUGS를 이용한 마르코프 연쇄 몬테칼로(Markov chain Mo...

Full description

Saved in:
Bibliographic Details
Published inŬngyong tʻonggye yŏnʼgu Vol. 26; no. 3; pp. 453 - 470
Main Authors 이민제, Min Jea Lee, 최태련, Tae Ryon Choi, 김정선, Jeong Seon Kim, 우해동, Hae Dong Woo
Format Journal Article
LanguageKorean
Published 한국통계학회 2013
Subjects
Online AccessGet full text
ISSN1225-066X
2383-5818

Cover

Loading…
More Information
Summary:본 논문에서는 카드뮴의 반응-용량 모형에 대한 베이지안 분석을 실시하고 기준용량에 대한 추정값들을 유도하고 비교한다. 이를 위하여 독성물질에 대한 용량반응곡선에서 많이 활용되는 두 가지 모형을 사용하고, 카드뮴의 독성연구에 관련한 기존의 문헌으로 수집된 자료에 대한 성별, 연령, 인종, study code 등과 같은 소집단 간의 개별적 형질을 반영할 수 있는 베이지안 메타분석 관점에서의 모형분석을 실시한다. 이러한 두 가지 모형에 대한 베이지안 분석을 위하여 WinBUGS를 이용한 마르코프 연쇄 몬테칼로(Markov chain Monte Carlo; MCMC) 방법을 통하여 모수를 추정하고 이에 따른 다양한 기준용량들을 계산하고 비교해보았다. 베이지안 모형 적합뿐만 아니라 편차정보기준을 통해서 주어진 자료를 더 잘 설명하는 모형을 선택하는 베이지안 모형 선택을 고려하였고, 이를 실제 자료에 적용해본다. In this paper, we consider a Bayesian analysis of the dose-effect relationship of cadmium to evaluate a benchmark dose(BMD). For this purpose, two dose-response curves commonly used in the toxicity study are fitted based on Bayesian methods to the data collected from the scientific literature on cadmium toxicity. Specifically, Bayesian meta-analysis and hierarchical modeling build an overall dose-effect relationship that use a piecewise linear model and Hill model, where the inter-study heterogeneity and inter-individual variability of dose and effect such as gender, age and ethnicity are accounted. Estimation of the unknown parameters is made by using a Markov chain Monte Carlo algorithm based user-friendly software WinBUGS. Benchmark dose estimates are evaluated for various cut-offs and compared with different tested subpopulations with with gender, age and ethnicity based on these two Bayesian hierarchical models.
Bibliography:The Korean Statistical Society
KISTI1.1003/JNL.JAKO201320360167921
G704-000408.2013.26.3.009
ISSN:1225-066X
2383-5818