함수회귀분석을 통한 교통량 예측
교통량 예측은 지방 행정의 의사결정에 매우 중요한 정보를 제공한다. 교통량 예측을 통해 교통혼잡비용을 줄이고 지역경제를 활성화 함으로써 사회적, 경제적 이익을 창출할 수 있다. 교통량은 미지의 확률적 규칙 하에서 시간의 흐름에 따라 궤적을 가지며 변화하는 함수데이터의 일종이다. 본 논문에서는 세 가지 함수회귀모형을 이용하여 과거에 관측된 교통량 궤적을 기반으로 미래의 관측되지 않은 교통량 궤적을 예측하는 방법을 제시한다. 본 논문에서 소개하는 세가지 방법은 전국 고속도로 영업소 중 서울, 춘천, 강릉 세 개 영업소에서 수집된 고속도...
Saved in:
Published in | Ŭngyong tʻonggye yŏnʼgu Vol. 34; no. 5; pp. 773 - 794 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Korean |
Published |
한국통계학회
2021
|
Subjects | |
Online Access | Get full text |
ISSN | 1225-066X 2383-5818 |
Cover
Summary: | 교통량 예측은 지방 행정의 의사결정에 매우 중요한 정보를 제공한다. 교통량 예측을 통해 교통혼잡비용을 줄이고 지역경제를 활성화 함으로써 사회적, 경제적 이익을 창출할 수 있다. 교통량은 미지의 확률적 규칙 하에서 시간의 흐름에 따라 궤적을 가지며 변화하는 함수데이터의 일종이다. 본 논문에서는 세 가지 함수회귀모형을 이용하여 과거에 관측된 교통량 궤적을 기반으로 미래의 관측되지 않은 교통량 궤적을 예측하는 방법을 제시한다. 본 논문에서 소개하는 세가지 방법은 전국 고속도로 영업소 중 서울, 춘천, 강릉 세 개 영업소에서 수집된 고속도로 영업소 데이터에 적용한다. 각 영업소 별로 세가지 방법의 예측오차를 비교함으로써 영업소별 최적 교통량 예측모형을 찾는다.
Prediction of vehicle traffic volume is very important in planning municipal administration. It may help promote social and economic interests and also prevent traffic congestion costs. Traffic volume as a time-varying trajectory is considered as functional data. In this paper we study three functional regression models that can be used to predict an unseen trajectory of traffic volume based on already observed trajectories. We apply the methods to highway tollgate traffic volume data collected at some tollgates in Seoul, Chuncheon and Gangneung. We compare the prediction errors of the three models to find the best one for each of the three tollgate traffic volumes. |
---|---|
Bibliography: | The Korean Statistical Society KISTI1.1003/JNL.JAKO202131541757391 |
ISSN: | 1225-066X 2383-5818 |