Flow and Transport Equations

2.1 Introduction Mathematical models of petroleum reservoirs have been utilized since the late 1800s. A mathematical model consists of a set of equations that describe the flow of fluids in a petroleum reservoir, together with an appropriate set of boundary and/or initial conditions. This chapter is...

Full description

Saved in:
Bibliographic Details
Published inComputational Methods for Multiphase Flows in Porous Media p. 1
Main Authors Chen, Zhangxin, Ma, Yuanle, Huan, Guanren
Format Book Chapter
LanguageEnglish
Published Society for Industrial and Applied Mathematics 2006
SeriesComputational Science and Engineering
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:2.1 Introduction Mathematical models of petroleum reservoirs have been utilized since the late 1800s. A mathematical model consists of a set of equations that describe the flow of fluids in a petroleum reservoir, together with an appropriate set of boundary and/or initial conditions. This chapter is devoted to the development of such a model. Fluid motion in a petroleum reservoir is governed by the conservation of mass, momentum, and energy. In the simulation of flow in the reservoir, the momentum equation is given in the form of Darcy's law (Darcy, 1856). Derived empirically, this law indicates a linear relationship between the fluid velocity relative to the solid and the pressure head gradient. Its theoretical basis was provided by, e.g., Whitaker (1966); also see the books by Bear (1972) and Scheidegger (1974). The present chapter reviews some models that are known to be of practical importance. There are several books available on fluid flow in porous media. The books by Muskat (1937; 1949) deal with the mechanics of fluid flow, the one by Collins (1961) is concerned with the practical and theoretical bases of petroleum reservoir engineering, and the one by Bear (1972) treats the dynamics and statics of fluids. The books by Peaceman (1977) and Aziz and Settari (1979) (also see Mattax and Dalton, 1990) present the application of finite difference methods to fluid flow in porous media. While the book by Chavent and Jaffré (1986) discusses finite element methods, the discussion is very brief, and most of their book is devoted to the mathematical formulation of models. The proceedings edited by Ewing (1983), Wheeler (1995), and Chen et al. (2000A) contain papers on finite elements for flow and transport problems. There are also books available on ground water hydrology; see Polubarinova-Kochina (1962), Wang and Anderson (1982), and Helmig (1997), for example. The material presented in this chapter is very condensed. We do not attempt to derive differential equations that govern the flow and transport of fluids in porous media, but rather we review these equations to introduce the terminology and notation used throughout this book. The chapter is organized as follows. We consider the single phase flow of a fluid in a porous medium in Section 2.2.
ISBN:9780898716061
0898716063
DOI:10.1137/1.9780898718942.ch2