Gamete fertility and ovule number variation in selfed reciprocal F1 hybrid triploid plants are heritable and display epigenetic parent-of-origin effects

Polyploidy and hybridization play major roles in plant evolution and reproduction. To investigate the reproductive effects of polyploidy and hybridization in Arabidopsis thaliana, we analyzed fertility of reciprocal pairs of F1 hybrid triploids, generated by reciprocally crossing 89 diploid accessio...

Full description

Saved in:
Bibliographic Details
Published inThe New phytologist Vol. 198; no. 1; pp. 71 - 81
Main Authors Duszynska, Dorota, McKeown, Peter C, Juenger, Thomas E, Pietraszewska‐Bogiel, Anna, Geelen, Danny, Spillane, Charlie
Format Journal Article
LanguageEnglish
Published England New Phytologist Trust 01.04.2013
Wiley Subscription Services, Inc
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Polyploidy and hybridization play major roles in plant evolution and reproduction. To investigate the reproductive effects of polyploidy and hybridization in Arabidopsis thaliana, we analyzed fertility of reciprocal pairs of F1 hybrid triploids, generated by reciprocally crossing 89 diploid accessions to a tetraploid Ler-0 line. All F1 hybrid triploid genotypes exhibited dramatically reduced ovule fertility, while variation in ovule number per silique was observed across different F1 triploid genotypes. These two reproductive traits were negatively correlated suggesting a trade-off between increased ovule number and ovule fertility. Furthermore, the ovule fertility of the F1 hybrid triploids displayed both hybrid dysgenesis and hybrid advantage (heterosis) effects. Strikingly, both reproductive traits (ovule fertility, ovule number) displayed epigenetic parent-of-origin effects between genetically identical reciprocal F1 hybrid triploid pairs. In some F1 triploid genotypes, the maternal genome excess F1 hybrid triploid was more fertile, whilst for other accessions the paternal genome excess F1 hybrid triploid was more fertile. Male gametogenesis was not significantly disrupted in F1 triploids. Fertility variation in the F1 triploid A. thaliana is mainly the result of disrupted ovule development. Overall, we demonstrate that in F1 triploid plants both ovule fertility and ovule number are subject to parent-of-origin effects that are genome dosage-dependent.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
ISSN:0028-646X
1469-8137
1469-8137
DOI:10.1111/nph.12147