n-Sec1: A Neural-Specific Syntaxin-Binding Protein

We have identified n-Sec1, a rat brain homolog of the yeast Sec1p protein that participates in the constitutive secretory pathway between the Golgi apparatus and the plasma membrane. The rat brain cDNA is predicted to encode a 68-kDa protein with 65% amino acid identity to Drosophila rop, 59% identi...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 91; no. 4; pp. 1445 - 1449
Main Authors Pevsner, Jonathan, Hsu, Shu-Chan, Scheller, Richard H.
Format Journal Article
LanguageEnglish
Published Washington, DC National Academy of Sciences of the United States of America 15.02.1994
National Acad Sciences
National Academy of Sciences
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We have identified n-Sec1, a rat brain homolog of the yeast Sec1p protein that participates in the constitutive secretory pathway between the Golgi apparatus and the plasma membrane. The rat brain cDNA is predicted to encode a 68-kDa protein with 65% amino acid identity to Drosophila rop, 59% identity to Caenorhabditis elegans unc-18, and 27% identity to Saccharomyces cerevisiae Sec1p. By RNA blot analysis, n-Sec1 mRNA expression is neural-specific. An anti-peptide antiserum directed against the n-Sec1 carboxyl terminus detects a 68-kDa protein in rat brain cytosol and membranes, but not in peripheral tissues. In the presence of syntaxin 1a, a plasma membrane protein implicated in synaptic vesicle docking, n-Sec1 becomes membrane-associated. n-Sec1 binds to syntaxin 1a, 2, and 3 fusion proteins coupled to agarose beads, but not to syntaxin 4 fusion protein or beads coupled to a variety of other proteins. These findings indicate that n-Sec1 is a neural-specific, syntaxin-binding protein that may participate in the regulation of synaptic vesicle docking and fusion.
Bibliography:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ObjectType-Article-1
ObjectType-Feature-2
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.91.4.1445