gfsA encodes a novel galactofuranosyltransferase involved in biosynthesis of galactofuranose antigen of O‐glycan in Aspergillus nidulans and Aspergillus fumigatus

Summary The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)‐containing polysaccharides and glycoconjugates, including O‐glycans, N‐glycans, fungal‐type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attem...

Full description

Saved in:
Bibliographic Details
Published inMolecular microbiology Vol. 90; no. 5; pp. 1054 - 1073
Main Authors Komachi, Yuji, Hatakeyama, Shintaro, Motomatsu, Haruka, Futagami, Taiki, Kizjakina, Karina, Sobrado, Pablo, Ekino, Keisuke, Takegawa, Kaoru, Goto, Masatoshi, Nomura, Yoshiyuki, Oka, Takuji
Format Journal Article
LanguageEnglish
Published England Blackwell Publishing Ltd 01.12.2013
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Summary The cells walls of filamentous fungi in the genus Aspergillus have galactofuranose (Galf)‐containing polysaccharides and glycoconjugates, including O‐glycans, N‐glycans, fungal‐type galactomannan and glycosylinositolphosphoceramide, which are important for cell wall integrity. Here, we attempted to identify galactofuranosyltransferases that couple Galf monomers onto other wall components in Aspergillus nidulans. Using reverse‐genetic and biochemical approaches, we identified that the AN8677 gene encoded a galactofuranosyltransferase, which we called GfsA, involved in Galf antigen biosynthesis. Disruption of gfsA reduced binding of β‐Galf‐specific antibody EB‐A2 to O‐glycosylated WscA protein and galactomannoproteins. The results of an in‐vitro Galf antigen synthase assay revealed that GfsA has β1,5‐ or β1,6‐galactofuranosyltransferase activity for O‐glycans in glycoproteins, uses UDP‐d‐Galf as a sugar donor, and requires a divalent manganese cation for activity. GfsA was found to be localized at the Golgi apparatus based on cellular fractionation experiments. ΔgfsA cells exhibited an abnormal morphology characterized by poor hyphal extension, hyphal curvature and limited formation of conidia. Several gfsA orthologues were identified in members of the Pezizomycotina subphylum of Ascomycota, including the human pathogen Aspergillus fumigatus. To our knowledge, this is the first characterization of a fungal β‐galactofuranosyltransferase, which was shown to be involved in Galf antigen biosynthesis of O‐glycans in the Golgi.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:0950-382X
1365-2958
DOI:10.1111/mmi.12416