Robust Monotone Submodular Function Maximization
We consider a robust formulation, introduced by Krause et al. (2008), of the classic cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of a given number of eleme...
Saved in:
Published in | Integer Programming and Combinatorial Optimization Vol. 9682; pp. 312 - 324 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
01.01.2016
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider a robust formulation, introduced by Krause et al. (2008), of the classic cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of a given number of elements from the chosen set. In particular, for the fundamental case of single element removal, we show that one can approximate the problem up to a factor $$(1-1/e)-\epsilon $$ by making $$O(n^{\frac{1}{\epsilon }})$$ queries, for arbitrary $$\epsilon >0$$ . The ideas are also extended to more general settings. |
---|---|
Bibliography: | Original Abstract: We consider a robust formulation, introduced by Krause et al. (2008), of the classic cardinality constrained monotone submodular function maximization problem, and give the first constant factor approximation results. The robustness considered is w.r.t. adversarial removal of a given number of elements from the chosen set. In particular, for the fundamental case of single element removal, we show that one can approximate the problem up to a factor \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(1-1/e)-\epsilon $$\end{document} by making \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(n^{\frac{1}{\epsilon }})$$\end{document} queries, for arbitrary \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\epsilon >0$$\end{document}. The ideas are also extended to more general settings. |
ISBN: | 9783319334608 3319334603 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-33461-5_26 |