Matrioska: A Compiler for Multi-key Homomorphic Signatures
Multi-Key Homomorphic Signatures (MK-HS) enable clients in a system to sign and upload messages to an untrusted server. At any later point in time, the server can perform a computation C $$C$$ on data provided by t $$t$$ different clients, and return the output y $$\mathsf {y}$$ and a short signatur...
Saved in:
Published in | Security and Cryptography for Networks Vol. 11035; pp. 43 - 62 |
---|---|
Main Authors | , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2018
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Online Access | Get full text |
Cover
Loading…
Summary: | Multi-Key Homomorphic Signatures (MK-HS) enable clients in a system to sign and upload messages to an untrusted server. At any later point in time, the server can perform a computation C $$C$$ on data provided by t $$t$$ different clients, and return the output y $$\mathsf {y}$$ and a short signature σC,y $$\sigma _{C, \mathsf {y}}$$ vouching for the correctness of y $$\mathsf {y}$$ as the output of the function C $$C$$ on the signed data. Interestingly, MK-HS enable verifiers to check the validity of the signature using solely the public keys of the signers whose messages were used in the computation. Moreover, the signatures σC,y $$\sigma _{C, \mathsf {y}}$$ are succinct, namely their size depends at most linearly in the number of clients, and only logarithmically in the total number of inputs of C $$C$$ . Existing MK-HS are constructed based either on standard assumptions over lattices (Fiore et al. ASIACRYPT’16), or on non-falsifiable assumptions (SNARKs) (Lai et al., ePrint’16). In this paper, we investigate connections between single-key and multi-key homomorphic signatures. We propose a generic compiler, called Matrioska, which turns any (sufficiently expressive) single-key homomorphic signature scheme into a multi-key scheme. Matrioska establishes a formal connection between these two primitives and is the first alternative to the only known construction under standard falsifiable assumptions. Our result relies on a novel technique that exploits the homomorphic property of a single-key HS scheme to compress an arbitrary number of signatures from t different users into only t signatures. |
---|---|
Bibliography: | Original Abstract: Multi-Key Homomorphic Signatures (MK-HS) enable clients in a system to sign and upload messages to an untrusted server. At any later point in time, the server can perform a computation C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} on data provided by t\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$t$$\end{document} different clients, and return the output y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {y}$$\end{document} and a short signature σC,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{C, \mathsf {y}}$$\end{document} vouching for the correctness of y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathsf {y}$$\end{document} as the output of the function C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document} on the signed data. Interestingly, MK-HS enable verifiers to check the validity of the signature using solely the public keys of the signers whose messages were used in the computation. Moreover, the signatures σC,y\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sigma _{C, \mathsf {y}}$$\end{document} are succinct, namely their size depends at most linearly in the number of clients, and only logarithmically in the total number of inputs of C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C$$\end{document}. Existing MK-HS are constructed based either on standard assumptions over lattices (Fiore et al. ASIACRYPT’16), or on non-falsifiable assumptions (SNARKs) (Lai et al., ePrint’16). In this paper, we investigate connections between single-key and multi-key homomorphic signatures. We propose a generic compiler, called Matrioska, which turns any (sufficiently expressive) single-key homomorphic signature scheme into a multi-key scheme. Matrioska establishes a formal connection between these two primitives and is the first alternative to the only known construction under standard falsifiable assumptions. Our result relies on a novel technique that exploits the homomorphic property of a single-key HS scheme to compress an arbitrary number of signatures from t different users into only t signatures. |
ISBN: | 9783319981123 3319981129 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-98113-0_3 |