Soft-Margin Softmax for Deep Classification
In deep classification, the softmax loss (Softmax) is arguably one of the most commonly used components to train deep convolutional neural networks (CNNs). However, such a widely used loss is limited due to its lack of encouraging the discriminability of features. Recently, the large-margin softmax...
Saved in:
Published in | Neural Information Processing Vol. 10635; pp. 413 - 421 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2017
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | In deep classification, the softmax loss (Softmax) is arguably one of the most commonly used components to train deep convolutional neural networks (CNNs). However, such a widely used loss is limited due to its lack of encouraging the discriminability of features. Recently, the large-margin softmax loss (L-Softmax [1]) is proposed to explicitly enhance the feature discrimination, with hard margin and complex forward and backward computation. In this paper, we propose a novel soft-margin softmax (SM-Softmax) loss to improve the discriminative power of features. Specifically, SM-Softamx only modifies the forward of Softmax by introducing a non-negative real number m, without changing the backward. Thus it can not only adjust the desired continuous soft margin but also be easily optimized by the typical stochastic gradient descent (SGD). Experimental results on three benchmark datasets have demonstrated the superiority of our SM-Softmax over the baseline Softmax, the alternative L-Softmax and several state-of-the-art competitors. |
---|---|
ISBN: | 3319700952 9783319700953 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-319-70096-0_43 |