On the Practical Security of Inner Product Functional Encryption

Functional Encryption (FE) is an exciting new paradigm that extends the notion of public key encryption. In this work we explore the security of Inner Product Functional Encryption schemes with the goal of achieving the highest security against practically feasible attacks. While there has been subs...

Full description

Saved in:
Bibliographic Details
Published inPublic-Key Cryptography -- PKC 2015 Vol. 9020; pp. 777 - 798
Main Authors Agrawal, Shashank, Agrawal, Shweta, Badrinarayanan, Saikrishna, Kumarasubramanian, Abishek, Prabhakaran, Manoj, Sahai, Amit
Format Book Chapter
LanguageEnglish
Published Germany Springer Berlin / Heidelberg 2015
Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Functional Encryption (FE) is an exciting new paradigm that extends the notion of public key encryption. In this work we explore the security of Inner Product Functional Encryption schemes with the goal of achieving the highest security against practically feasible attacks. While there has been substantial research effort in defining meaningful security models for FE, known definitions run into one of the following difficulties – if general and strong, the definition can be shown impossible to achieve, whereas achievable definitions necessarily restrict the usage scenarios in which FE schemes can be deployed. We argue that it is extremely hard to control the nature of usage scenarios that may arise in practice. Any cryptographic scheme may be deployed in an arbitrarily complex environment and it is vital to have meaningful security guarantees for general scenarios. Hence, in this work, we examine whether it is possible to analyze the security of FE in a wider variety of usage scenarios, but with respect to a meaningful class of adversarial attacks known to be possible in practice. Note that known impossibilities necessitate that we must either restrict the usage scenarios (as done in previous works), or the class of attacks (this work). We study real world loss-of-secrecy attacks against Functional Encryption for Inner Product predicates constructed over elliptic curve groups. Our main contributions are as follows:We capture a large variety of possible usage scenarios that may arise in practice by providing a stronger, more general, intuitive framework that supports function privacy in addition to data privacy, and a separate encryption key in addition to public key and master secret key. These generalizations allow our framework to capture program obfuscation as a special case of functional encryption, and allows for a separation between users that encrypt data, access data and produce secret keys.We note that the landscape of attacks over pairing-friendly elliptic curves have been the subject of extensive research and there now exist constructions of pairing-friendly elliptic curves where the complexity of all known non-generic attacks is (far) greater than the complexity of generic attacks. Thus, by appropriate choice of the underlying elliptic curve, we can capture all known practically feasible attacks on secrecy by restricting our attention to generic attacks.We construct a new inner product FE scheme using prime order groups and show it secure under our new, hitherto strongest known framework in the generic group model, thus ruling out all generic attacks in arbitrarily complex real world environments. Since our construction is over prime order groups, we rule out factoring attacks that typically force higher security parameters. Our concrete-analysis proofs provide guidance on the size of elliptic curve groups that are needed for explicit complexity bounds on the attacker.
Bibliography:S. Agrawal, M. Prabhakaran—Research supported in part by NSF grant 1228856.S. Badrinarayanan—Part of the work was done while the author was at University of Illinois Urbana-Champaign, supported by S. N. Bose scholarship.A. Sahai—Research supported in part from a DARPA/ONR PROCEED award, NSF Frontier Award 1413955, NSF grants 1228984, 1136174, 1118096, and 1065276, a Xerox Faculty Research Award, a Google Faculty Research Award, an equipment grant from Intel, and an Okawa Foundation Research Grant. This material is based upon work supported by the Defense Advanced Research Projects Agency through the U.S. Office of Naval Research under Contract N00014-11- 1-0389. The views expressed are those of the author and do not reflect the official policy or position of the Department of Defense, the National Science Foundation, or the U.S. Government.
ISBN:3662464462
9783662464465
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-662-46447-2_35