Defect‐Assisted Anchoring of Pt Single Atoms on MoS2 Nanosheets Produces High‐Performance Catalyst for Industrial Hydrogen Evolution Reaction

Pt‐based catalysts are currently the most efficient electrocatalysts for the hydrogen evolution reaction (HER), but the scarcity and high cost of Pt limit industrial applications. Downsizing Pt nanoparticles (NPs) to single atoms (SAs) can expose more active sites and increase atomic utilization, th...

Full description

Saved in:
Bibliographic Details
Published inSmall (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 4; pp. e2104824 - n/a
Main Authors Zhu, Jingting, Tu, Yudi, Cai, Lejuan, Ma, Haibin, Chai, Yang, Zhang, Lifu, Zhang, Wenjing
Format Journal Article
LanguageEnglish
Published Weinheim Wiley Subscription Services, Inc 01.01.2022
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Pt‐based catalysts are currently the most efficient electrocatalysts for the hydrogen evolution reaction (HER), but the scarcity and high cost of Pt limit industrial applications. Downsizing Pt nanoparticles (NPs) to single atoms (SAs) can expose more active sites and increase atomic utilization, thus decreasing the cost. Here, a solar‐irradiation strategy is used to prepare hybrid SA‐Pt/MoS2 nanosheets (NSs) that demonstrate excellent HER activity (the overpotential at a current density of 10 mA cm−2 (η10) of 44 mV, and Tafel slope of 34.83 mV dec−1 in acidic media; η10 of 123 mV, and Tafel slope of 76.71 mV dec−1 in alkaline media). Defects and deformations introduced by thermal pretreatment of the hydrothermal MoS2 NSs promote anchoring and stability of Pt SAs. The fabrication of Pt SAs and NPs is easily controlled using different Pt‐precursor concentrations. Moreover, SA‐Pt/MoS2 produced under natural sunlight exhibits high HER performance (η10 of 55 mV, and Tafel slope of 43.54 mV dec−1), which indicates its viability for mass production. Theoretical simulations show that Pt improves the absorption of H atoms and the charge‐transfer kinetics of MoS2, which significantly enhance HER activity. A simple, inexpensive strategy for preparing SA‐Pt/MoS2 hybrid catalysts for industrial HER is provided. This study proposes a defect‐assisted solar‐irradiation strategy to prepare Pt single atoms (SAs)/MoS2 nanosheets hybrid electrocatalysts for the hydrogen evolution reaction (HER), in which the produced defects promote anchoring and stability of the Pt SAs. This hybrid presents excellent HER activity in both acidic and alkaline media and can be produced under natural sunlight, making it suitable for industrial application.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1613-6810
1613-6829
DOI:10.1002/smll.202104824