心室筋内向き整流カリウム電流と細胞内マグネシウムイオン

I. はじめに 心室筋の静止電位は約-90mVに維持されており, 生理的には自発的に脱分極することはない. この電気生理学的性質はK+の平衡電位(Ek)付近の膜電位で流れる内向き整流K+電流(Ik1)の存在による. IK1が流れるK+チャネルは, 活動電位が発生し膜が脱分極すると急速に閉じ, 活動電位の間にK+濃度勾配に従って外向きのK+電流が流れだすのを防いでいる(図1A). この性質は心筋活動電位の長いプラトー相がわずかな内向き電流によって維持されることを可能にし, 活動電位発生に伴うエネルギー需要を減少させる重要な役割をになう1). 再分極が始まると, 膜電位がEKに近づくにつれてIK1...

Full description

Saved in:
Bibliographic Details
Published in心電図 Vol. 28; no. 3; pp. 235 - 241
Main Author 石原, 圭子
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本不整脈心電学会 2008
日本心電学会
Online AccessGet full text
ISSN0285-1660
1884-2437
DOI10.5105/jse.28.235

Cover

Abstract I. はじめに 心室筋の静止電位は約-90mVに維持されており, 生理的には自発的に脱分極することはない. この電気生理学的性質はK+の平衡電位(Ek)付近の膜電位で流れる内向き整流K+電流(Ik1)の存在による. IK1が流れるK+チャネルは, 活動電位が発生し膜が脱分極すると急速に閉じ, 活動電位の間にK+濃度勾配に従って外向きのK+電流が流れだすのを防いでいる(図1A). この性質は心筋活動電位の長いプラトー相がわずかな内向き電流によって維持されることを可能にし, 活動電位発生に伴うエネルギー需要を減少させる重要な役割をになう1). 再分極が始まると, 膜電位がEKに近づくにつれてIK1チャネルは開き, 外向き電流が増加する(図1B). それによって心室筋活動電位終盤の速やかな再分極を引き起こすこともIK1の重要な機能である1). IK1のプルキンエ線維における存在がDenis Nobleによって見出されたときから, IK1は時間依存性を示さない電流, すなわち背景電流(background current)として記載されてきた(IK1の名はNobleが初期に膜のK+コンダクタンスを時間非依存性成分と時間依存性成分に分け, それぞれGK1, GK2とよんだこと2)に由来するため, 心筋分野における独自のよび名である).
AbstractList I. はじめに 心室筋の静止電位は約-90mVに維持されており, 生理的には自発的に脱分極することはない. この電気生理学的性質はK+の平衡電位(Ek)付近の膜電位で流れる内向き整流K+電流(Ik1)の存在による. IK1が流れるK+チャネルは, 活動電位が発生し膜が脱分極すると急速に閉じ, 活動電位の間にK+濃度勾配に従って外向きのK+電流が流れだすのを防いでいる(図1A). この性質は心筋活動電位の長いプラトー相がわずかな内向き電流によって維持されることを可能にし, 活動電位発生に伴うエネルギー需要を減少させる重要な役割をになう1). 再分極が始まると, 膜電位がEKに近づくにつれてIK1チャネルは開き, 外向き電流が増加する(図1B). それによって心室筋活動電位終盤の速やかな再分極を引き起こすこともIK1の重要な機能である1). IK1のプルキンエ線維における存在がDenis Nobleによって見出されたときから, IK1は時間依存性を示さない電流, すなわち背景電流(background current)として記載されてきた(IK1の名はNobleが初期に膜のK+コンダクタンスを時間非依存性成分と時間依存性成分に分け, それぞれGK1, GK2とよんだこと2)に由来するため, 心筋分野における独自のよび名である).
Author 石原, 圭子
Author_xml – sequence: 1
  fullname: 石原, 圭子
  organization: 佐賀大学医学部器官・細胞生理分野
BookMark eNo1kM1Kw0AUhQdRsNZufI_UO3_pZCnFPyiIoOthkkw1IaaS6MJlE3QjBV24EsSFiFSUghUXLnyYIVXfwpHq5hy45_BdOAtoNu2lGqElDE2OgS_HuW4S0SSUz6AaFoI5hNHWLKoBEdzBrgvzqJHnkQ9cMM9GtIa2q4-yer77fDqvzk6ri0vTH0yuxpPXvikeTTk0xb0pb7-v338v_YfP8eirvLFNU96YYmTKgSneph1T3JliaMqXRTTXVUmuG39eR7trqzvtDaeztb7ZXuk4McUMHOJyxSj1u1yFWgkfEwrKpW5XMR-o5zEW-h4LPeqGFIfQFS7xoeVxN9Ba2JjW0dqUe6DDKFBJL02iVMu4d5yl9q8MU6YTHShJAIQEuwFQCRgk2IGsMCw4b1FuQe0pKM6P1J6Wh1l0oLITqbKjKEgsMdfYE1gSIemfWMB_GuyrTMaK_gC04o5P
ContentType Journal Article
Copyright 特定非営利活動法人 日本心電学会
Copyright_xml – notice: 特定非営利活動法人 日本心電学会
CorporateAuthor 佐賀大学医学部器官・細胞生理分野
CorporateAuthor_xml – name: 佐賀大学医学部器官・細胞生理分野
DOI 10.5105/jse.28.235
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1884-2437
EndPage 241
ExternalDocumentID dn4eleca_2008_002803_010_0235_0241855735
article_jse1981_28_3_28_3_235_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
MOJWN
RJT
ID FETCH-LOGICAL-j3140-265a433bf5adea8b1230a636fa4b039944db94d936d31d0f862b07956cee89943
ISSN 0285-1660
IngestDate Thu Jul 10 16:10:30 EDT 2025
Wed Sep 03 06:28:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly true
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j3140-265a433bf5adea8b1230a636fa4b039944db94d936d31d0f862b07956cee89943
OpenAccessLink https://www.jstage.jst.go.jp/article/jse1981/28/3/28_3_235/_article/-char/ja
PageCount 7
ParticipantIDs medicalonline_journals_dn4eleca_2008_002803_010_0235_0241855735
jstage_primary_article_jse1981_28_3_28_3_235_article_char_ja
PublicationCentury 2000
PublicationDate 20080000
PublicationDateYYYYMMDD 2008-01-01
PublicationDate_xml – year: 2008
  text: 20080000
PublicationDecade 2000
PublicationTitle 心電図
PublicationTitleAlternate 心電図
PublicationYear 2008
Publisher 一般社団法人 日本不整脈心電学会
日本心電学会
Publisher_xml – name: 一般社団法人 日本不整脈心電学会
– name: 日本心電学会
References 9) Vandenberg CA: Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci USA, 1987; 84: 2560-2564
20) Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM: Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell, 2003; 114: 191-200
10) Tursun P, Tashiro M, Konishi M: Modulation of Mg2+ efflux from rat ventricular myocytes studied with the fluorescent indicator furaptra. Biophys J, 2005; 88: 1911-1924
19) Flamigni F, Rossoni C, Stefanelli C, Caldarera CM Polyamine metabolism and function in the heart. J Mol Cell Cardiol, 1986; 18: 3-11
1) Noble D: The initiation of the heartbeat: Oxford University Press, 1979
11) Yan DH, Ishihara K: Two Kir2.1 channel populations with different sensitivities to Mg2+ and polyamine block : a model for the cardiac strong inward rectifier K+ channel. J Physiol, 2005; 563: 725-744
14) Ishihara K, Ehara T: Two modes of polyamine block regulating the cardiac inward rectifier K +current IK, as revealed by a study of the Kir2.1 channel expressed in a human cell line. J Physiol, 2004; 556: 61-78
2) Noble D: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol, 1962; 160: 317-352
4) Kurachi Y : Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. J Physiol, 1985; 366: 365-385
13) Yan DH, Nishimura K, Yoshida K, Nakahira K, Ehara T, Igarashi K, Ishihara K: Different intracellular polyamine concentrations underlie the difference in the inward rectifier K + currents in atria and ventricles of the guinea-pig heart. J Physiol, 2005; 563: 713-724
15) Ishihara K, Ehara T: A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. J Physiol, 1998; 510: 755-771
6) Lopatin AN, Makhina EN, Nichols CG: Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature, 1994; 372: 366-369
5) Matsuda H: Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. J Physiol, 1988; 397: 237-258
12) Watanabe S, Kusama-Eguchi K, Kobayashi H, Igarashi K: Estimation of polyamine binding to macromolecules and ATP in Bovine lymphocytes and rat liver. J Biol Chem, 1991; 266: 20803-20809
21) Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A : Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol, 2003; 53: 105-123
8) Ishihara K: Time-dependent outward currents through the inward rectifier potassium channel IRK1. The role of weak blocking molecules. J Gen Physio1, 1997; 109: 229-243
17) Ishihara K, Yan DH: Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels. J Physiol, 2007; 583: 891-908
18) Jelicks LA, Gupta RK: Intracellular free magnesium and high energy phosphates in the perfused normotensive and spontaneously hypertensive rat heart. A 31P NMR study. Am J Hypertens, 1991; 4: 131-136
7) Yamashita T, Horio Y, Yamada M, Takahashi N, Kondo C, Kurachi Y: Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J Physiol, 1996 ; 493: 143-156
3) Sakmann B, Trube G: Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J Physiol, 1984; 347: 659-683
16) Ishihara K, Yan DH, Yamamoto S, Ehara T Inward rectifier K+ current under physiological cytoplasmic conditions in guinea-pig cardiac ventricular cells. J Physiol, 2002; 540: 831-841
References_xml – reference: 7) Yamashita T, Horio Y, Yamada M, Takahashi N, Kondo C, Kurachi Y: Competition between Mg2+ and spermine for a cloned IRK2 channel expressed in a human cell line. J Physiol, 1996 ; 493: 143-156
– reference: 8) Ishihara K: Time-dependent outward currents through the inward rectifier potassium channel IRK1. The role of weak blocking molecules. J Gen Physio1, 1997; 109: 229-243
– reference: 1) Noble D: The initiation of the heartbeat: Oxford University Press, 1979
– reference: 10) Tursun P, Tashiro M, Konishi M: Modulation of Mg2+ efflux from rat ventricular myocytes studied with the fluorescent indicator furaptra. Biophys J, 2005; 88: 1911-1924
– reference: 12) Watanabe S, Kusama-Eguchi K, Kobayashi H, Igarashi K: Estimation of polyamine binding to macromolecules and ATP in Bovine lymphocytes and rat liver. J Biol Chem, 1991; 266: 20803-20809
– reference: 15) Ishihara K, Ehara T: A repolarization-induced transient increase in the outward current of the inward rectifier K+ channel in guinea-pig cardiac myocytes. J Physiol, 1998; 510: 755-771
– reference: 3) Sakmann B, Trube G: Voltage-dependent inactivation of inward-rectifying single-channel currents in the guinea-pig heart cell membrane. J Physiol, 1984; 347: 659-683
– reference: 18) Jelicks LA, Gupta RK: Intracellular free magnesium and high energy phosphates in the perfused normotensive and spontaneously hypertensive rat heart. A 31P NMR study. Am J Hypertens, 1991; 4: 131-136
– reference: 11) Yan DH, Ishihara K: Two Kir2.1 channel populations with different sensitivities to Mg2+ and polyamine block : a model for the cardiac strong inward rectifier K+ channel. J Physiol, 2005; 563: 725-744
– reference: 21) Matsuoka S, Sarai N, Kuratomi S, Ono K, Noma A : Role of individual ionic current systems in ventricular cells hypothesized by a model study. Jpn J Physiol, 2003; 53: 105-123
– reference: 6) Lopatin AN, Makhina EN, Nichols CG: Potassium channel block by cytoplasmic polyamines as the mechanism of intrinsic rectification. Nature, 1994; 372: 366-369
– reference: 14) Ishihara K, Ehara T: Two modes of polyamine block regulating the cardiac inward rectifier K +current IK, as revealed by a study of the Kir2.1 channel expressed in a human cell line. J Physiol, 2004; 556: 61-78
– reference: 2) Noble D: A modification of the Hodgkin-Huxley equations applicable to Purkinje fibre action and pace-maker potentials. J Physiol, 1962; 160: 317-352
– reference: 16) Ishihara K, Yan DH, Yamamoto S, Ehara T Inward rectifier K+ current under physiological cytoplasmic conditions in guinea-pig cardiac ventricular cells. J Physiol, 2002; 540: 831-841
– reference: 5) Matsuda H: Open-state substructure of inwardly rectifying potassium channels revealed by magnesium block in guinea-pig heart cells. J Physiol, 1988; 397: 237-258
– reference: 4) Kurachi Y : Voltage-dependent activation of the inward-rectifier potassium channel in the ventricular cell membrane of guinea-pig heart. J Physiol, 1985; 366: 365-385
– reference: 17) Ishihara K, Yan DH: Low-affinity spermine block mediating outward currents through Kir2.1 and Kir2.2 inward rectifier potassium channels. J Physiol, 2007; 583: 891-908
– reference: 9) Vandenberg CA: Inward rectification of a potassium channel in cardiac ventricular cells depends on internal magnesium ions. Proc Natl Acad Sci USA, 1987; 84: 2560-2564
– reference: 20) Schmitz C, Perraud AL, Johnson CO, Inabe K, Smith MK, Penner R, Kurosaki T, Fleig A, Scharenberg AM: Regulation of vertebrate cellular Mg2+ homeostasis by TRPM7. Cell, 2003; 114: 191-200
– reference: 13) Yan DH, Nishimura K, Yoshida K, Nakahira K, Ehara T, Igarashi K, Ishihara K: Different intracellular polyamine concentrations underlie the difference in the inward rectifier K + currents in atria and ventricles of the guinea-pig heart. J Physiol, 2005; 563: 713-724
– reference: 19) Flamigni F, Rossoni C, Stefanelli C, Caldarera CM Polyamine metabolism and function in the heart. J Mol Cell Cardiol, 1986; 18: 3-11
SSID ssib058494373
ssib001722325
ssib053390697
ssj0000389130
ssib039893109
Score 1.7211521
Snippet I. はじめに 心室筋の静止電位は約-90mVに維持されており, 生理的には自発的に脱分極することはない. この電気生理学的性質はK+の平衡電位(Ek)付近の膜電位で流れる内向き整流K+電流(Ik1)の存在による. IK1が流れるK+チャネルは, 活動電位が発生し膜が脱分極すると急速に閉じ,...
SourceID medicalonline
jstage
SourceType Publisher
StartPage 235
Title 心室筋内向き整流カリウム電流と細胞内マグネシウムイオン
URI https://www.jstage.jst.go.jp/article/jse1981/28/3/28_3_235/_article/-char/ja
http://mol.medicalonline.jp/library/journal/download?GoodsID=dn4eleca/2008/002803/010&name=0235-0241j
Volume 28
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 心電図, 2008/06/08, Vol.28(3), pp.235-241
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1Na9RAdGjrRRFRVKxf9OAcsyaZmWQGBEl2sxRFodBCbyHZZA8LrmK3F2-boBcp6MGTUDwUkYpSsOLBgz8mbKv_wvcy2TQrPVS9DI83b2Ze3pvMvDcfbwi5FaU8dsG1MhIuXIM7LDakAscVY31HphtHrFzQf_DQWV7j99bF-tz8mcappc1R3Oo9O_Zeyb9oFXCgV7wl-xearSsFBMCgX0hBw5CeSMc0ENTvUskQ8ALqcRq41OtQ6SNGOlQKBJRJlUUDBmYjlR0aOFRBQY6ALxCJWTb1_BJg1POmGGeKMWmgqPKp78-WsqgnsVGozQcaicQqaLTOppiyQqQpMciGxrjHtaUxfAp4VZbPmsZ04_Nr3kQJ1IMZsqa6gCg5ChBGkjYKCWXWofoZ0XrhQ9adtBQTSFOUAJRoH98e1IGsw_e3qfIaA6sthWE5-h2D6Sxgy0ZvZ80hXYdTqawDW4fp-nPiQTMVJ56NtGXLVl1kJpB3MuT4tFFUvfyJe9osBHc4xJBDkGAYIeEyMU9O2a5r4fnU-yuNLU0XLLmjwZfB38QaofLBkFQYpqpeYDTLHWi9xlh9rw7Pi7zePuIUTK8BOCIYYeLsI705qIO0NOys1fPkXOUgLXm6t18gc4PoIlmZ_Mgnn3cOP72cvHg-efW6GG8dvNk_-Douso9Fvltk74v83a-33xEz_nC4v_cz3wbKIt8usr0i3yqyb5qmyHaKbLfIv1wia91gtb1sVI-BGAOGR5BtR0ScsbgvoiSNZAwWlxk5zOlHHIWhOE9ixRPFnIRZidkHTz02XfD-wQqUkM0uk4Xh42F6hSyZjIvIln0R93tcmqlkUEXKLRevpCb93iK5oyUSPtERX8LqDw9BapaSVmjLkFUJqG6ai_ckw0G0SO7OyDGsRoyN8KQ94Op_13CNnNYHm3Ct8DpZGD3dTG-A9TyKb5a96jdbYqQD
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E5%BF%83%E5%AE%A4%E7%AD%8B%E5%86%85%E5%90%91%E3%81%8D%E6%95%B4%E6%B5%81%E3%82%AB%E3%83%AA%E3%82%A6%E3%83%A0%E9%9B%BB%E6%B5%81%E3%81%A8%E7%B4%B0%E8%83%9E%E5%86%85%E3%83%9E%E3%82%B0%E3%83%8D%E3%82%B7%E3%82%A6%E3%83%A0%E3%82%A4%E3%82%AA%E3%83%B3&rft.jtitle=%E5%BF%83%E9%9B%BB%E5%9B%B3&rft.au=%E7%9F%B3%E5%8E%9F%E5%9C%AD%E5%AD%90&rft.date=2008&rft.pub=%E6%97%A5%E6%9C%AC%E5%BF%83%E9%9B%BB%E5%AD%A6%E4%BC%9A&rft.issn=0285-1660&rft.volume=28&rft.issue=3&rft.spage=235&rft.epage=241&rft_id=info:doi/10.5105%2Fjse.28.235&rft.externalDocID=dn4eleca_2008_002803_010_0235_0241855735
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0285-1660&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0285-1660&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0285-1660&client=summon