製パンプロセスにおけるパン酵母のストレス耐性:プロリン・アルギニン代謝と育種への応用
[1. はじめに] パン酵母(ほとんどはSaccharomyces cerevisiaeの2倍体)は発酵によって生産されるパン製品に必要な成分であり, 世界中で年間約200万トンのパン酵母が製造されている. 製パンプロセスにおけるパン酵母の機能は, 1) 発酵中にガス生成によって生地の重量を増やすこと, 2) 生地の構造や質感を形成すること, 3) 生地に特徴的な風味を付与することなどである. パン酵母は主にクリームイースト, 生イースト(圧搾酵母), ドライイースト(乾燥酵母)の形態で製造される. クリームイーストは乾燥重量で約20%の酵母を, 部分的な脱水によって製造する生イーストは乾燥重...
Saved in:
Published in | 日本食品微生物学会雑誌 Vol. 31; no. 4; pp. 185 - 193 |
---|---|
Main Author | |
Format | Journal Article |
Language | Japanese |
Published |
日本食品微生物学会
2014
|
Online Access | Get full text |
ISSN | 1340-8267 1882-5982 |
DOI | 10.5803/jsfm.31.185 |
Cover
Abstract | [1. はじめに] パン酵母(ほとんどはSaccharomyces cerevisiaeの2倍体)は発酵によって生産されるパン製品に必要な成分であり, 世界中で年間約200万トンのパン酵母が製造されている. 製パンプロセスにおけるパン酵母の機能は, 1) 発酵中にガス生成によって生地の重量を増やすこと, 2) 生地の構造や質感を形成すること, 3) 生地に特徴的な風味を付与することなどである. パン酵母は主にクリームイースト, 生イースト(圧搾酵母), ドライイースト(乾燥酵母)の形態で製造される. クリームイーストは乾燥重量で約20%の酵母を, 部分的な脱水によって製造する生イーストは乾燥重量で約30%の酵母をそれぞれ含んでいる. 日本ではほとんどのパン酵母がクリームイーストか生イーストとして製造されている. 一方, 水分が5%以下のドライイーストは欧州などから輸入され, 貯蔵・輸送の利便性が高いことからホームベーカリーやベーカリーショップでの使用が増加している. |
---|---|
AbstractList | [1. はじめに] パン酵母(ほとんどはSaccharomyces cerevisiaeの2倍体)は発酵によって生産されるパン製品に必要な成分であり, 世界中で年間約200万トンのパン酵母が製造されている. 製パンプロセスにおけるパン酵母の機能は, 1) 発酵中にガス生成によって生地の重量を増やすこと, 2) 生地の構造や質感を形成すること, 3) 生地に特徴的な風味を付与することなどである. パン酵母は主にクリームイースト, 生イースト(圧搾酵母), ドライイースト(乾燥酵母)の形態で製造される. クリームイーストは乾燥重量で約20%の酵母を, 部分的な脱水によって製造する生イーストは乾燥重量で約30%の酵母をそれぞれ含んでいる. 日本ではほとんどのパン酵母がクリームイーストか生イーストとして製造されている. 一方, 水分が5%以下のドライイーストは欧州などから輸入され, 貯蔵・輸送の利便性が高いことからホームベーカリーやベーカリーショップでの使用が増加している. |
Author | 高木, 博史 |
Author_xml | – sequence: 1 fullname: 高木, 博史 organization: 奈良先端科学技術大学院大学バイオサイエンス研究科 |
BookMark | eNo1kcFKHEEQhptgIGbjKc8xm-6u6dmeS0BETUDIJTk3PbM9ZobdWZnRgxdxpgmIQVAIBMRcsocs0WwgEogY8WEq0c3JV7Anq5f6C_76v4Kqx2QmH-SGkKeMtoWk8Cwrk34bWJtJ8YDMMim5J0LJZ1wPPvUkDzqPyFxZphGlYRiKgMIs2ZoML9AeoD1F-xHtN6zPsT7D6hirXawOsH4_df-9-3n1fQ-rcePaHbQnrpls719tf7n5fXiXtV__cxzhM9pjrMdoXfz0z_lwcvIJq9Gk_nE9GmP1y3H-Xh5dfxg9IQ8T3SvN3J22yJulxdcLL7yVV8svF-ZXvAwYSC8ONMgwinwAFidMx4GvOdXdBBLoJpGMm4EENJhOl4WCcWk6HS1YBCHEPAigRZan3L7pprHuDfJemhuVDTaK3O1VxoisHCR9xSnzFaXAaCNMUXdNV0LgDsWFcKTnU1JWrutVo9aKtK-LTaWL9TTuOaT7ggKm_KY04XsjfqsLlWm4BRGnrpc |
ContentType | Journal Article |
Copyright | 2014 日本食品微生物学会 |
Copyright_xml | – notice: 2014 日本食品微生物学会 |
CorporateAuthor | 奈良先端科学技術大学院大学バイオサイエンス研究科 |
CorporateAuthor_xml | – name: 奈良先端科学技術大学院大学バイオサイエンス研究科 |
DOI | 10.5803/jsfm.31.185 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1882-5982 |
EndPage | 193 |
ExternalDocumentID | ee5jsofm_2014_003104_001_0185_01932393255 article_jsfm_31_4_31_185_article_char_ja |
GroupedDBID | ABJNI ALMA_UNASSIGNED_HOLDINGS E3Z JSF KQ8 MOJWN RJT |
ID | FETCH-LOGICAL-j3138-c6a389bb4331cf1ac64a20adf3f3dfb8cc6a3f3a3e7d195128e77a51b393c2663 |
ISSN | 1340-8267 |
IngestDate | Thu Jul 10 16:11:54 EDT 2025 Wed Sep 03 06:29:59 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j3138-c6a389bb4331cf1ac64a20adf3f3dfb8cc6a3f3a3e7d195128e77a51b393c2663 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jsfm/31/4/31_185/_article/-char/ja |
PageCount | 9 |
ParticipantIDs | medicalonline_journals_ee5jsofm_2014_003104_001_0185_01932393255 jstage_primary_article_jsfm_31_4_31_185_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20140000 |
PublicationDateYYYYMMDD | 2014-01-01 |
PublicationDate_xml | – year: 2014 text: 20140000 |
PublicationDecade | 2010 |
PublicationTitle | 日本食品微生物学会雑誌 |
PublicationTitleAlternate | 日食微誌 |
PublicationYear | 2014 |
Publisher | 日本食品微生物学会 |
Publisher_xml | – name: 日本食品微生物学会 |
References | 10) Franca, M. B., Panek, A. D. and Eleutherio, E. C.: Oxidative stress and its effects during dehydration. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 146, 621–631 (2007). 43) Shima, J. and Takagi, H.: Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol. Appl. Biochem., 53, 155–164 (2009). 38) Sasano, Y., Watanabe, D., Ukibe, K., Inai, T., Ohtsu, I., Shimoi, H. and Takagi, H.: Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J. Biosci. Bioeng., 113, 451–455 (2012). 31) Park, J. I., Grant, C. M., Davies, M. J. and Dawes, I. W.: The cytoplasmic Cu, Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. J. Biol. Chem., 273, 22921–22928 (1988). 41) Shima, J., Hino, A., Yamada-Iyo, C., Suzuki, Y., Nakajima, R., Watanabe, H., Mori, K. and Takano, H.: Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker's yeast. Appl. Environ. Microbiol., 65, 2841–2846 (1999). 19) Matsuura, K. and Takagi, H.: Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae. J. Biosci. Bioeng., 100, 538–544 (2005). 11) Hahn, Y. S. and Kawai, H.: Isolation and characterization of freeze- tolerant yeasts from nature available for the frozen-dough method. Agric. Biol. Chem., 54, 829–831 (1990). 30) Osinga, K. A., Beudeker, R. F., van der Plaat, J. B. and de Hollander, J. A.: EU Patent 0306107A2 (1988). 4) Burrows, S.: Baker's yeast: The yeast, Vol. 3, Yeast technology. Rose, A. H. and Harrison, J. S. (eds.), p. 349–420, Academic Press, London (1970). 18) Liljeström-Suominen, P. L., Joutsjoki, V. and Korhola, M. P.: Construction of a stable α-galactosidase producing baker's yeast. Appl. Environ. Microbiol., 54, 245–249 (1988). 23) Nakamura, T., Mizukami-Murata, S., Ando, A., Murata, Y., Takagi, H. and Shima, J.: Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production. J. Biosci. Bioeng., 106, 405–408 (2008). 12) Hino, A., Takano, H. and Tanaka, Y.: New freeze-tolerant yeast for frozen dough preparations. Cereal Chem., 64, 269–275 (1987). 51) Terao, Y., Nakamori, S. and Takagi, H.: Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 69, 6527–6532 (2003). 46) Takagi, H., Matsui, F., Kawaguchi, A., Wu, H., Shimoi, H. and Kubo, Y.: Construction and analysis of self-cloning sake yeasts that accumulate proline. J. Biosci. Bioeng., 103, 377–380 (2007). 24) Nasuno, R., Hirano, Y., Itoh, T., Hakoshima, T., Hibi, T. and Takagi, H.: Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proc. Natl. Acad. Sci. U.S.A., 110, 11821–11826 (2013). 1) Ando, A., Suzuki, C. and Shima, J.: Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment. Appl. Environ. Microbiol., 71, 7075–7082 (2005). 52) Van Dijck, P., Colavizza, D., Smet, P. and Thevelein, J. M.: Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol., 61, 109–115 (1995). 39) Sekine, T., Kawaguchi, A., Hamano, Y. and Takagi, H.: Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl. Environ. Microbiol., 73, 4011–4019 (2007). 22) Nakagawa, S. and Ouchi, K.: Improvement of freeze tolerance of commercial baker's yeasts in dough by heat treatment before freezing. Biosci. Biotechnol. Biochem., 58, 2077–2079 (1994). 26) Nishimura, A., Kawahara, N. and Takagi, H.: The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem. Biophys. Res. Commun., 430, 137–143 (2013). 42) Shima, J., Sakata-Tsuda, Y., Suzuki, Y., Nakajima, R., Watanabe, H., Kawamoto, S. and Takano, H.: Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol., 69, 715–718 (2003). 49) Takagi, H., Takaoka, M., Kawaguchi, A. and Kubo, Y.: Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 71, 8656–8662 (2005). 54) Verstrepen, K. J., Iserentant, D., Malcorps, P., Derdelinckx, G., Van Dijck, P., Winderickx, J., Pretorius, I. S., Thevelein, J. M. and Delvaux, F. R.: Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol., 22, 531–537 (2004). 7) Dequin, S.: The potential of genetic engineering for improving brewing, wine-making and bread making. Appl. Microbiol. Biotechnol., 56, 577–588 (2001). 35) Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H.: Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. J. Biosci. Bioeng., 113, 592–595 (2012 56) Watanabe, M., Watanabe, D., Akao, T. and Shimoi, H.: Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J. Biosci. Bioeng., 107, 516–518 (2009). 16) Kaino, T., Tateiwa, T., Mizukami-Murata, S., Shima, J. and Takagi, H.: Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs. Appl. Environ. Microbiol., 74, 5845–5849 (2008). 9) Du, X. and Takagi, H.: N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl. Microbiol. Biotechnol., 75, 1343–1351 (2007). 3) Attfield, P. V.: Stress tolerance: the key to effective strains of industrial baker's yeast. Nat. Biotechnol., 15, 1351–1357 (1997). 29) Oda, Y., Uno, K. and Ohta, S.: Selection of yeasts for breadmaking by the frozen-dough method. Appl. Environ. Microbiol., 52, 941–943 (1986). 34) Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H.: Overexpression of the transcription activator Msn2 enhances fermentation ability of industrial baker's yeast in frozen dough. Biosci. Biotechnol. Biochem., 76, 624–627 (2012). 15) Kaino, T. and Takagi, H.: Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl. Microbiol. Biotechnol., 79, 273–283 (2008). 48) Takagi, H., Shichiri, M., Takemura, M., Mohri, M. and Nakamori, S.: Saccharomyces cerevisiae Σ1278b has novel genes of the N-acetyltransferase gene superfamily required for l-proline analogue resistance. J. Bacteriol., 182, 4249–4256 (2000). 13) Hirasawa, T., Nakakura, Y., Yoshikawa, K., Ashitani, K., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H. and Shioya, S.: Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Appl. Microbiol. Biotechnol., 70, 346–357 (2006). 25) Nishimura, A., Kotani, T., Sasano, Y. and Takagi, H.: An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res., 10, 687–698 (2010). 8) Du, X. and Takagi, H.: N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. J. Biochem., 138, 391–397 (2005). 28) Nomura, M. and Takagi, H.: Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc. Natl. Acad. Sci. U.S.A., 101, 12616–12621 (2004). 14) Iinoya, K., Kotani, T., Sasano, Y. and Takagi, H.: Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol. Bioeng., 103, 341–352 (2009). 44) Takagi, H.: Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol., 81, 211–223 (2008). 32) Randez-Gil, F., Sanz, P. and Pietro, J. A.: Engineering baker's yeast: room for improvement. Trends Biotechnol., 17, 237–244 (1999). 33) Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H.: Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb. Cell Fact., 11, 40 (2012a). doi:10.1186/1475–2859–11–40 55) Watanabe, M., Fukuda, K., Asano, K. and Ohta, S.: Mutants of baker's yeasts producing a large amount of isobutyl alcohol or isoamyl alcohol, flavor components of bread. Appl. Microbiol. Biotechnol., 34, 154–159 (1990). 2) Ando, A., Tanaka, F., Murata, Y., Takagi, H. and Shima, J.: Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Res., 6, 249–267 (2006). 36) Sasano, Y., Haitani, Y., Ohtsu, I., Shima, J. and Takagi, H.: Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int. J. Food Microbiol., 152, 40–43 (2012). 45) Takagi, H., Iwamoto, F. and Nakamori, S.: Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl. Microbiol. Biotechnol., 47, 405–411 (1997). 47) Takagi, H., Sakai, K., Morida, K. and Nakamori, S.: Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol. Lett., 184, 103–108 (2000). 5) Cronwright, G. R., Rohwer, J. M. and Prior, B. A.: Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl |
References_xml | – reference: 20) Morita, Y., Nakamori, S. and Takagi, H.: l-Proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding γ-glutamyl kinase. Appl. Environ. Microbiol., 69, 212–219 (2003). – reference: 51) Terao, Y., Nakamori, S. and Takagi, H.: Gene dosage effect of l-proline biosynthetic enzymes on l-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 69, 6527–6532 (2003). – reference: 54) Verstrepen, K. J., Iserentant, D., Malcorps, P., Derdelinckx, G., Van Dijck, P., Winderickx, J., Pretorius, I. S., Thevelein, J. M. and Delvaux, F. R.: Glucose and sucrose: hazardous fast-food for industrial yeast? Trends Biotechnol., 22, 531–537 (2004). – reference: 23) Nakamura, T., Mizukami-Murata, S., Ando, A., Murata, Y., Takagi, H. and Shima, J.: Changes in gene expression of commercial baker's yeast during an air-drying process that simulates dried yeast production. J. Biosci. Bioeng., 106, 405–408 (2008). – reference: 35) Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H.: Simultaneous accumulation of proline and trehalose in industrial baker's yeast enhances fermentation ability in frozen dough. J. Biosci. Bioeng., 113, 592–595 (2012) – reference: 7) Dequin, S.: The potential of genetic engineering for improving brewing, wine-making and bread making. Appl. Microbiol. Biotechnol., 56, 577–588 (2001). – reference: 9) Du, X. and Takagi, H.: N-Acetyltransferase Mpr1 confers ethanol tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. Appl. Microbiol. Biotechnol., 75, 1343–1351 (2007). – reference: 29) Oda, Y., Uno, K. and Ohta, S.: Selection of yeasts for breadmaking by the frozen-dough method. Appl. Environ. Microbiol., 52, 941–943 (1986). – reference: 53) Verbruggen, N. and Hermans, C.: Proline accumulation in plants: a review. Amino Acids, 35, 753–759 (2008). – reference: 43) Shima, J. and Takagi, H.: Stress-tolerance of baker's-yeast (Saccharomyces cerevisiae) cells: stress-protective molecules and genes involved in stress tolerance. Biotechnol. Appl. Biochem., 53, 155–164 (2009). – reference: 13) Hirasawa, T., Nakakura, Y., Yoshikawa, K., Ashitani, K., Nagahisa, K., Furusawa, C., Katakura, Y., Shimizu, H. and Shioya, S.: Comparative analysis of transcriptional responses to saline stress in the laboratory and brewing strains of Saccharomyces cerevisiae with DNA microarray. Appl. Microbiol. Biotechnol., 70, 346–357 (2006). – reference: 42) Shima, J., Sakata-Tsuda, Y., Suzuki, Y., Nakajima, R., Watanabe, H., Kawamoto, S. and Takano, H.: Disruption of the CAR1 gene encoding arginase enhances freeze tolerance of the commercial baker's yeast Saccharomyces cerevisiae. Appl. Environ. Microbiol., 69, 715–718 (2003). – reference: 44) Takagi, H.: Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl. Microbiol. Biotechnol., 81, 211–223 (2008). – reference: 17) Landolfo, S., Politi, H., Angelozzi, D. and Mannazzu, I.: ROS accumulation and oxidative damage to cell structures in Saccharomyces cerevisiae wine strains during fermentation of high-sugar-containing medium. Biochim. Biophys. Acta, 1780, 892–898 (2008). – reference: 39) Sekine, T., Kawaguchi, A., Hamano, Y. and Takagi, H.: Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl. Environ. Microbiol., 73, 4011–4019 (2007). – reference: 45) Takagi, H., Iwamoto, F. and Nakamori, S.: Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl. Microbiol. Biotechnol., 47, 405–411 (1997). – reference: 40) Shichiri, M., Hoshikawa, C., Nakamori, S. and Takagi, H.: A novel acetyltransferase found in Saccharomyces cerevisiae Σ1278b that detoxifies a proline analogue, azetidine-2-carboxylic acid. J. Biol. Chem., 276, 41998–42002 (2001). – reference: 38) Sasano, Y., Watanabe, D., Ukibe, K., Inai, T., Ohtsu, I., Shimoi, H. and Takagi, H.: Overexpression of the yeast transcription activator Msn2 confers furfural resistance and increases the initial fermentation rate in ethanol production. J. Biosci. Bioeng., 113, 451–455 (2012). – reference: 31) Park, J. I., Grant, C. M., Davies, M. J. and Dawes, I. W.: The cytoplasmic Cu, Zn superoxide dismutase of Saccharomyces cerevisiae is required for resistance to freeze-thaw stress. J. Biol. Chem., 273, 22921–22928 (1988). – reference: 57) Wick, E. L., De Figueiredo, M. and Wallace, D. H.: The volatile components of white bread prepared by a preferent method. Cereal Chem., 41, 300–315 (1964). – reference: 4) Burrows, S.: Baker's yeast: The yeast, Vol. 3, Yeast technology. Rose, A. H. and Harrison, J. S. (eds.), p. 349–420, Academic Press, London (1970). – reference: 50) Tanaka-Tsuno, F., Mizukami-Murata, S., Murata, Y., Nakamura, T., Ando, A., Takagi, H. and Shima, J.: Functional genomics of commercial baker's yeasts that have different abilities for sugar utilization and high-sucrose tolerance under different sugar conditions. Yeast, 24, 901–911 (2007). – reference: 10) Franca, M. B., Panek, A. D. and Eleutherio, E. C.: Oxidative stress and its effects during dehydration. Comp. Biochem. Physiol. A Mol. Integr. Physiol., 146, 621–631 (2007). – reference: 48) Takagi, H., Shichiri, M., Takemura, M., Mohri, M. and Nakamori, S.: Saccharomyces cerevisiae Σ1278b has novel genes of the N-acetyltransferase gene superfamily required for l-proline analogue resistance. J. Bacteriol., 182, 4249–4256 (2000). – reference: 14) Iinoya, K., Kotani, T., Sasano, Y. and Takagi, H.: Engineering of the yeast antioxidant enzyme Mpr1 for enhanced activity and stability. Biotechnol. Bioeng., 103, 341–352 (2009). – reference: 32) Randez-Gil, F., Sanz, P. and Pietro, J. A.: Engineering baker's yeast: room for improvement. Trends Biotechnol., 17, 237–244 (1999). – reference: 28) Nomura, M. and Takagi, H.: Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc. Natl. Acad. Sci. U.S.A., 101, 12616–12621 (2004). – reference: 49) Takagi, H., Takaoka, M., Kawaguchi, A. and Kubo, Y.: Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 71, 8656–8662 (2005). – reference: 47) Takagi, H., Sakai, K., Morida, K. and Nakamori, S.: Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol. Lett., 184, 103–108 (2000). – reference: 33) Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H.: Enhancement of the proline and nitric oxide synthetic pathway improves fermentation ability under multiple baking-associated stress conditions in industrial baker's yeast. Microb. Cell Fact., 11, 40 (2012a). doi:10.1186/1475–2859–11–40 – reference: 46) Takagi, H., Matsui, F., Kawaguchi, A., Wu, H., Shimoi, H. and Kubo, Y.: Construction and analysis of self-cloning sake yeasts that accumulate proline. J. Biosci. Bioeng., 103, 377–380 (2007). – reference: 11) Hahn, Y. S. and Kawai, H.: Isolation and characterization of freeze- tolerant yeasts from nature available for the frozen-dough method. Agric. Biol. Chem., 54, 829–831 (1990). – reference: 30) Osinga, K. A., Beudeker, R. F., van der Plaat, J. B. and de Hollander, J. A.: EU Patent 0306107A2 (1988). – reference: 36) Sasano, Y., Haitani, Y., Ohtsu, I., Shima, J. and Takagi, H.: Proline accumulation in baker's yeast enhances high-sucrose stress tolerance and fermentation ability in sweet dough. Int. J. Food Microbiol., 152, 40–43 (2012). – reference: 21) Nakagawa, S. and Ouchi, K.: Construction from a single parent of baker's yeast strains with high freeze tolerance and fermentative activity in both lean and sweet doughs. Appl. Environ. Microbiol., 60, 3499–3502 (1994). – reference: 15) Kaino, T. and Takagi, H.: Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl. Microbiol. Biotechnol., 79, 273–283 (2008). – reference: 22) Nakagawa, S. and Ouchi, K.: Improvement of freeze tolerance of commercial baker's yeasts in dough by heat treatment before freezing. Biosci. Biotechnol. Biochem., 58, 2077–2079 (1994). – reference: 3) Attfield, P. V.: Stress tolerance: the key to effective strains of industrial baker's yeast. Nat. Biotechnol., 15, 1351–1357 (1997). – reference: 2) Ando, A., Tanaka, F., Murata, Y., Takagi, H. and Shima, J.: Identification and classification of genes required for tolerance to high-sucrose stress revealed by genome-wide screening of Saccharomyces cerevisiae. FEMS Yeast Res., 6, 249–267 (2006). – reference: 8) Du, X. and Takagi, H.: N-acetyltransferase Mpr1 confers freeze tolerance on Saccharomyces cerevisiae by reducing reactive oxygen species. J. Biochem., 138, 391–397 (2005). – reference: 1) Ando, A., Suzuki, C. and Shima, J.: Survival of genetically modified and self-cloned strains of commercial baker's yeast in simulated natural environments: environmental risk assessment. Appl. Environ. Microbiol., 71, 7075–7082 (2005). – reference: 12) Hino, A., Takano, H. and Tanaka, Y.: New freeze-tolerant yeast for frozen dough preparations. Cereal Chem., 64, 269–275 (1987). – reference: 18) Liljeström-Suominen, P. L., Joutsjoki, V. and Korhola, M. P.: Construction of a stable α-galactosidase producing baker's yeast. Appl. Environ. Microbiol., 54, 245–249 (1988). – reference: 52) Van Dijck, P., Colavizza, D., Smet, P. and Thevelein, J. M.: Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl. Environ. Microbiol., 61, 109–115 (1995). – reference: 34) Sasano, Y., Haitani, Y., Hashida, K., Ohtsu, I., Shima, J. and Takagi, H.: Overexpression of the transcription activator Msn2 enhances fermentation ability of industrial baker's yeast in frozen dough. Biosci. Biotechnol. Biochem., 76, 624–627 (2012). – reference: 24) Nasuno, R., Hirano, Y., Itoh, T., Hakoshima, T., Hibi, T. and Takagi, H.: Structural and functional analysis of the yeast N-acetyltransferase Mpr1 involved in oxidative stress tolerance via proline metabolism. Proc. Natl. Acad. Sci. U.S.A., 110, 11821–11826 (2013). – reference: 16) Kaino, T., Tateiwa, T., Mizukami-Murata, S., Shima, J. and Takagi, H.: Self-cloning baker's yeasts that accumulate proline enhance freeze tolerance in doughs. Appl. Environ. Microbiol., 74, 5845–5849 (2008). – reference: 41) Shima, J., Hino, A., Yamada-Iyo, C., Suzuki, Y., Nakajima, R., Watanabe, H., Mori, K. and Takano, H.: Stress tolerance in doughs of Saccharomyces cerevisiae trehalase mutants derived from commercial baker's yeast. Appl. Environ. Microbiol., 65, 2841–2846 (1999). – reference: 55) Watanabe, M., Fukuda, K., Asano, K. and Ohta, S.: Mutants of baker's yeasts producing a large amount of isobutyl alcohol or isoamyl alcohol, flavor components of bread. Appl. Microbiol. Biotechnol., 34, 154–159 (1990). – reference: 19) Matsuura, K. and Takagi, H.: Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae. J. Biosci. Bioeng., 100, 538–544 (2005). – reference: 25) Nishimura, A., Kotani, T., Sasano, Y. and Takagi, H.: An antioxidative mechanism mediated by the yeast N-acetyltransferase Mpr1: oxidative stress-induced arginine synthesis and its physiological role. FEMS Yeast Res., 10, 687–698 (2010). – reference: 37) Sasano, Y., Takahashi, S., Shima, J. and Takagi, H.: Antioxidant N-acetyltransferase Mpr1/2 of industrial baker's yeast enhances fermentation ability after air-drying stress in bread dough. Int. J. Food Microbiol., 138, 181–185 (2010). – reference: 5) Cronwright, G. R., Rohwer, J. M. and Prior, B. A.: Metabolic control analysis of glycerol synthesis in Saccharomyces cerevisiae. Appl. Environ. Microbiol., 68, 4448–4456 (2002). – reference: 26) Nishimura, A., Kawahara, N. and Takagi, H.: The flavoprotein Tah18-dependent NO synthesis confers high-temperature stress tolerance on yeast cells. Biochem. Biophys. Res. Commun., 430, 137–143 (2013). – reference: 56) Watanabe, M., Watanabe, D., Akao, T. and Shimoi, H.: Overexpression of MSN2 in a sake yeast strain promotes ethanol tolerance and increases ethanol production in sake brewing. J. Biosci. Bioeng., 107, 516–518 (2009). – reference: 6) Csonka, L. N.: Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol. Gen. Genet., 182, 82–86 (1981). – reference: 27) Nishimura, A., Nasuno, R. and Takagi, H.: The proline metabolism intermediate Δ1-pyrroline-5-carboxylate directly inhibits the mitochondrial respiration in budding yeast. FEBS Lett., 586, 2411–2416 (2012). |
SSID | ssib009995603 ssib002484640 ssj0061902 ssib000972266 ssib002222508 |
Score | 1.942661 |
Snippet | [1. はじめに] パン酵母(ほとんどはSaccharomyces cerevisiaeの2倍体)は発酵によって生産されるパン製品に必要な成分であり, 世界中で年間約200万トンのパン酵母が製造されている. 製パンプロセスにおけるパン酵母の機能は, 1) 発酵中にガス生成によって生地の重量を増やすこと, 2)... |
SourceID | medicalonline jstage |
SourceType | Publisher |
StartPage | 185 |
Title | 製パンプロセスにおけるパン酵母のストレス耐性:プロリン・アルギニン代謝と育種への応用 |
URI | https://www.jstage.jst.go.jp/article/jsfm/31/4/31_185/_article/-char/ja http://mol.medicalonline.jp/library/journal/download?GoodsID=ee5jsofm/2014/003104/001&name=0185-0193j |
Volume | 31 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 日本食品微生物学会雑誌, 2014/12/31, Vol.31(4), pp.185-193 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEF9KRRBU_MT6RR_M452bzX4kb-5e7yiKgtBC35b9BA_aitc-6IP0bhFEESwIguiLfbDYWsEiKFX8Y6Lt-eS_4Mxm99yWCrUIZTuXzPwymXSbmVwy0bRLtgiiNLHjWuKYac2kUVjjKbNqPIjDJLWYHue73a_fsMcnzatT1tTQ8JHKrqX5ubAe3dv1XMl-RhXKYFzxlOw_jOwAFAqAhvGFJ4wwPPc0xqTJicuIN0aajHBGBC0Ij5UlTkG4iscgnlcSIicocb2C4G5BFDgG4d5uyIJwi3gWadrEbRE-VuI0tyPDDy9bb1SquNpdgeJAuKBhi3gNIty_6AyEu7Nfg164RskzKGmWrXsVKRNFwFZoMWhroDPP9QHFAMfBj4U4JR6v9Av62yKigTzCBLaqT48dAZ3d3CDAg50V2JZooaDIQRChmUPlCFjlEA5sAqugp66dK6nsIIjwcptz7DsfrGTnwFDDy6Y4viKIAKOAgkCAMY3qWg79s4r73zWtTGnMxGQB6tKTeqLKMK7C1I3VebCYjW9VF3nySY2qS5UK_4iqGy13Tr0W1zEFSLuTTtcZrQ9ktuUyL94UH7l8Rn0TH8DqlxV41NBvQ7xzwHAcilt0r92shAvCgWihmt4PZiO9Gj6DN13JXSTw2LY-8MxsWuxBLi2izuui5pcreoMv2obIDFNuHJ5W35aqrDUVx3PimHa0iBhHXaX7cW2oHZzQDqo7ZO-e1O73l77KbFFm6zJ7LrN3srche59ld0V2H8nuouw9VrU_H3zcfP9EdtewNnsos1Ug-gtPNxfe_PryopDN3uY4gPBaZiuytyYzEF__vrHUX30lu8v93oet5TXZ_QQ4P7693Hq2fEqbbDUnGuO14lKVWptRcG4iO4AYJQzxpGSU0iCyzcDQgzhlKYvTkEfIkLKAJU5MIfwyeOI4gUVDJlgExmenteGZ2ZnkjDbKAgt8qSA186grDgIjsm0rtmmi64ltOiOaowzp31aZc_y9jv-IdmWb5f3in27HTxKr3ZkFaXx9VGJj_EV9HWF0DEdBUcOyzu678XPaIQRX66znteG5O_PJBYg85sKL-Z_jbwWJBv8 |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%A3%BD%E3%83%91%E3%83%B3%E3%83%97%E3%83%AD%E3%82%BB%E3%82%B9%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E3%83%91%E3%83%B3%E9%85%B5%E6%AF%8D%E3%81%AE%E3%82%B9%E3%83%88%E3%83%AC%E3%82%B9%E8%80%90%E6%80%A7%EF%BC%9A%E3%83%97%E3%83%AD%E3%83%AA%E3%83%B3%E3%83%BB%E3%82%A2%E3%83%AB%E3%82%AE%E3%83%8B%E3%83%B3%E4%BB%A3%E8%AC%9D%E3%81%A8%E8%82%B2%E7%A8%AE%E3%81%B8%E3%81%AE%E5%BF%9C%E7%94%A8&rft.jtitle=%E6%97%A5%E6%9C%AC%E9%A3%9F%E5%93%81%E5%BE%AE%E7%94%9F%E7%89%A9%E5%AD%A6%E4%BC%9A%E9%9B%91%E8%AA%8C&rft.au=%E9%AB%98%E6%9C%A8%2C+%E5%8D%9A%E5%8F%B2&rft.date=2014&rft.pub=%E6%97%A5%E6%9C%AC%E9%A3%9F%E5%93%81%E5%BE%AE%E7%94%9F%E7%89%A9%E5%AD%A6%E4%BC%9A&rft.issn=1340-8267&rft.eissn=1882-5982&rft.volume=31&rft.issue=4&rft.spage=185&rft.epage=193&rft_id=info:doi/10.5803%2Fjsfm.31.185&rft.externalDocID=article_jsfm_31_4_31_185_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1340-8267&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1340-8267&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1340-8267&client=summon |