Improved Quantum Circuits for Elliptic Curve Discrete Logarithms
We present improved quantum circuits for elliptic curve scalar multiplication, the most costly component in Shor’s algorithm to compute discrete logarithms in elliptic curve groups. We optimize low-level components such as reversible integer and modular arithmetic through windowing techniques and mo...
Saved in:
Published in | Post-Quantum Cryptography Vol. 12100; pp. 425 - 444 |
---|---|
Main Authors | , , , , |
Format | Book Chapter |
Language | English |
Published |
Switzerland
Springer International Publishing AG
2020
Springer International Publishing |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We present improved quantum circuits for elliptic curve scalar multiplication, the most costly component in Shor’s algorithm to compute discrete logarithms in elliptic curve groups. We optimize low-level components such as reversible integer and modular arithmetic through windowing techniques and more adaptive placement of uncomputing steps, and improve over previous quantum circuits for modular inversion by reformulating the binary Euclidean algorithm. Overall, we obtain an affine Weierstrass point addition circuit that has lower depth and uses fewer T gates than previous circuits. While previous work mostly focuses on minimizing the total number of qubits, we present various trade-offs between different cost metrics including the number of qubits, circuit depth and T-gate count. Finally, we provide a full implementation of point addition in the Q# quantum programming language that allows unit tests and automatic quantum resource estimation for all components. |
---|---|
Bibliography: | S. Jaques—Partially supported by the University of Oxford Clarendon fund.Most of this work was done by Samuel Jaques, while he was an intern at Microsoft Research. |
ISBN: | 3030442225 9783030442224 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-030-44223-1_23 |