Evolutionary Deep Learning for Car Park Occupancy Prediction in Smart Cities

This study presents a new technique based on Deep Learning with Recurrent Neural Networks to address the prediction of car park occupancy rate. This is an interesting problem in smart mobility and we here approach it in an innovative way, consisting in automatically design a deep network that encaps...

Full description

Saved in:
Bibliographic Details
Published inLearning and Intelligent Optimization Vol. 11353; pp. 386 - 401
Main Authors Camero, Andrés, Toutouh, Jamal, Stolfi, Daniel H., Alba, Enrique
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study presents a new technique based on Deep Learning with Recurrent Neural Networks to address the prediction of car park occupancy rate. This is an interesting problem in smart mobility and we here approach it in an innovative way, consisting in automatically design a deep network that encapsulates the behavior of the car occupancy and then is able to make an informed guess on the number of free parking spaces near to the medium time horizon. We analyze a real world case study consisting of the occupancy values of 29 car parks in Birmingham, UK, during eleven weeks and compare our results to other predictors in the state-of-the-art. The results show that our approach is accurate to the point of being useful for being used by citizens in their daily lives, as well as it outperforms the existing competitors.
AbstractList This study presents a new technique based on Deep Learning with Recurrent Neural Networks to address the prediction of car park occupancy rate. This is an interesting problem in smart mobility and we here approach it in an innovative way, consisting in automatically design a deep network that encapsulates the behavior of the car occupancy and then is able to make an informed guess on the number of free parking spaces near to the medium time horizon. We analyze a real world case study consisting of the occupancy values of 29 car parks in Birmingham, UK, during eleven weeks and compare our results to other predictors in the state-of-the-art. The results show that our approach is accurate to the point of being useful for being used by citizens in their daily lives, as well as it outperforms the existing competitors.
Author Alba, Enrique
Stolfi, Daniel H.
Toutouh, Jamal
Camero, Andrés
Author_xml – sequence: 1
  givenname: Andrés
  surname: Camero
  fullname: Camero, Andrés
  email: andrescamero@uma.es
– sequence: 2
  givenname: Jamal
  surname: Toutouh
  fullname: Toutouh, Jamal
– sequence: 3
  givenname: Daniel H.
  surname: Stolfi
  fullname: Stolfi, Daniel H.
– sequence: 4
  givenname: Enrique
  surname: Alba
  fullname: Alba, Enrique
BookMark eNo1kMtOwzAQRQ0URFv6Byz8A4bxI4m9RKE8pEitBKwtJ7EhbUmCnSL173EKrGZ0r85odGZo0natReiawg0FyG5VJgknwIFAwoUkTHN2ghYx5jE8ZuwUTWlKKeFcqDM0-y8yMUHTuDOiMsEv0IyCpByEAHqJFiFsAIAxKdIkmaJi-d3t9kPTtcYf8L21PS6s8W3TvmPXeZwbj9fGb_Gqqva9aasDXntbN9WI4KbFL5_GDzhvhsaGK3TuzC7Yxd-co7eH5Wv-RIrV43N-V5ANBzUQS13NnBPSJbVMK-XqNHPWWEZLiK-CkbKkZZKYFJxJbVaa2HNpGC-BSVXxOWK_d0Pv46PW67LrtkFT0KM8HS1prqMCfRSlR3kREr9Q77uvvQ2DtiNV2XbwZld9mH6wPuhEMZFkQkenmivFfwClwm8o
ContentType Book Chapter
Copyright Springer Nature Switzerland AG 2019
Copyright_xml – notice: Springer Nature Switzerland AG 2019
DBID FFUUA
DEWEY 6.31
DOI 10.1007/978-3-030-05348-2_32
DatabaseName ProQuest Ebook Central - Book Chapters - Demo use only
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISBN 9783030053482
3030053482
EISSN 1611-3349
Editor Battiti, Roberto
Brunato, Mauro
Kotsireas, Ilias
Pardalos, Panos M
Editor_xml – sequence: 1
  fullname: Pardalos, Panos M
– sequence: 2
  fullname: Battiti, Roberto
– sequence: 3
  fullname: Brunato, Mauro
– sequence: 4
  fullname: Kotsireas, Ilias
EndPage 401
ExternalDocumentID EBC5924574_349_399
GroupedDBID 0D6
0DA
38.
AABBV
AEDXK
AEJLV
AEKFX
AEZAY
AIFIR
ALEXF
ALMA_UNASSIGNED_HOLDINGS
AYMPB
BBABE
CXBFT
CZZ
EXGDT
FCSXQ
FFUUA
I4C
IEZ
MGZZY
NSQWD
OORQV
SBO
TPJZQ
TSXQS
Z81
Z83
Z88
-DT
-~X
29L
2HA
2HV
ACGFS
ADCXD
EJD
F5P
LAS
LDH
P2P
RSU
~02
ID FETCH-LOGICAL-j309t-e1fd2ff48f5d86c9fd67feae21b00810a88b1b55a60fa6e7ba67f38a23b0289c3
ISBN 3030053474
9783030053475
ISSN 0302-9743
IngestDate Tue Jul 29 20:15:18 EDT 2025
Thu May 29 16:31:05 EDT 2025
IsPeerReviewed true
IsScholarly true
LCCallNum QA76.9.A43
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j309t-e1fd2ff48f5d86c9fd67feae21b00810a88b1b55a60fa6e7ba67f38a23b0289c3
OCLC 1081304401
PQID EBC5924574_349_399
PageCount 16
ParticipantIDs springer_books_10_1007_978_3_030_05348_2_32
proquest_ebookcentralchapters_5924574_349_399
PublicationCentury 2000
PublicationDate 2019-01-01
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Cham
PublicationSeriesSubtitle Theoretical Computer Science and General Issues
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSeriesTitleAlternate Lect.Notes Computer
PublicationSubtitle 12th International Conference, LION 12, Kalamata, Greece, June 10-15, 2018, Revised Selected Papers
PublicationTitle Learning and Intelligent Optimization
PublicationYear 2019
Publisher Springer International Publishing AG
Springer International Publishing
Publisher_xml – name: Springer International Publishing AG
– name: Springer International Publishing
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Steffen, Bernhard
Pandu Rangan, C.
Kanade, Takeo
Kittler, Josef
Hutchison, David
Tygar, Doug
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
– sequence: 8
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
– sequence: 9
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
– sequence: 10
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
– sequence: 11
  givenname: Doug
  surname: Tygar
  fullname: Tygar, Doug
SSID ssj0002284655
ssj0002792
Score 2.4372373
Snippet This study presents a new technique based on Deep Learning with Recurrent Neural Networks to address the prediction of car park occupancy rate. This is an...
SourceID springer
proquest
SourceType Publisher
StartPage 386
SubjectTerms Car park occupancy
Deep learning
Deep neuroevolution
Evolutionary algorithms
Smart cities
Title Evolutionary Deep Learning for Car Park Occupancy Prediction in Smart Cities
URI http://ebookcentral.proquest.com/lib/SITE_ID/reader.action?docID=5924574&ppg=399
http://link.springer.com/10.1007/978-3-030-05348-2_32
Volume 11353
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swELbW7gXxMBhDsMHkh71FmdLEdpLHUsoqhDYkWtQ3y05sCaSWqWQ88NfvLonTJOoL9CGq8sM63ec4d-f77gj5ESurohGPfS1ycFBEFvuK8dRPWYDuRG7hh9kWv8Vswa6XfLltsFiySwr9M3vdySt5D6pwDnBFluwbkG0GhRPwH_CFIyAMx57x2w2zVuxlF9SoMnpdZc3C-wOrwKqmV7ZnxPSlFgYT5S6N-es1Q2Cu4URtPORA14WHkZF5u8FtHJcOebeCaeZNyhKs7WAB8pM6wQIXLOyFG1sRr_GvjoMJHzh8TVnV3aRZMbFZxs71t51yAY_6-CxgJusYZqfcdVR1RuqVu55eTDj4hDxmMmKphJsGZBAnfEg-jqfXN_dNAC2ED6vgHPk6Tsiq0GNL6BZXcpdMHa-itxFe2hfzA7KPnBOKZBCQ8pB8MOvP5JPruEHrBfiI3LQxpIghdRhSwJAChhQxpA2GdIshfVjTEkNaYfiFLK6m88nMr_th-I9RkBa-Gdk8tJYllueJyFKbi9gaZcKRRssuUEmiR5pzJQKrhIm1gutRosJI435yFh2T4fppbU4ITZVgWc7gPdUZmDE6jY0JEptrcHBVaMNT4jvNyHLXvk4Vzio9PMseRqfEc-qTePuzdOWwQe8ykqB3Wepdot6_vnH0b2RvO5nPyLDY_DPnYAsW-ns9K_4DRiFb3Q
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Learning+and+Intelligent+Optimization&rft.atitle=Evolutionary+Deep+Learning+for+Car+Park+Occupancy+Prediction+in+Smart+Cities&rft.date=2019-01-01&rft.pub=Springer+International+Publishing+AG&rft.isbn=9783030053475&rft.volume=11353&rft_id=info:doi/10.1007%2F978-3-030-05348-2_32&rft.externalDBID=399&rft.externalDocID=EBC5924574_349_399
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=https%3A%2F%2Febookcentral.proquest.com%2Fcovers%2F5924574-l.jpg