Evolutionary Deep Learning for Car Park Occupancy Prediction in Smart Cities

This study presents a new technique based on Deep Learning with Recurrent Neural Networks to address the prediction of car park occupancy rate. This is an interesting problem in smart mobility and we here approach it in an innovative way, consisting in automatically design a deep network that encaps...

Full description

Saved in:
Bibliographic Details
Published inLearning and Intelligent Optimization Vol. 11353; pp. 386 - 401
Main Authors Camero, Andrés, Toutouh, Jamal, Stolfi, Daniel H., Alba, Enrique
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 01.01.2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This study presents a new technique based on Deep Learning with Recurrent Neural Networks to address the prediction of car park occupancy rate. This is an interesting problem in smart mobility and we here approach it in an innovative way, consisting in automatically design a deep network that encapsulates the behavior of the car occupancy and then is able to make an informed guess on the number of free parking spaces near to the medium time horizon. We analyze a real world case study consisting of the occupancy values of 29 car parks in Birmingham, UK, during eleven weeks and compare our results to other predictors in the state-of-the-art. The results show that our approach is accurate to the point of being useful for being used by citizens in their daily lives, as well as it outperforms the existing competitors.
ISBN:3030053474
9783030053475
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-05348-2_32