Group Anomaly Detection Using Deep Generative Models

Unlike conventional anomaly detection research that focuses on point anomalies, our goal is to detect anomalous collections of individual data points. In particular, we perform group anomaly detection (GAD) with an emphasis on irregular group distributions (e.g. irregular mixtures of image pixels)....

Full description

Saved in:
Bibliographic Details
Published inMachine Learning and Knowledge Discovery in Databases Vol. 11051; pp. 173 - 189
Main Authors Chalapathy, Raghavendra, Toth, Edward, Chawla, Sanjay
Format Book Chapter
LanguageEnglish
Published Switzerland Springer International Publishing AG 2019
Springer International Publishing
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Unlike conventional anomaly detection research that focuses on point anomalies, our goal is to detect anomalous collections of individual data points. In particular, we perform group anomaly detection (GAD) with an emphasis on irregular group distributions (e.g. irregular mixtures of image pixels). GAD is an important task in detecting unusual and anomalous phenomena in real-world applications such as high energy particle physics, social media and medical imaging. In this paper, we take a generative approach by proposing deep generative models: Adversarial autoencoder (AAE) and variational autoencoder (VAE) for group anomaly detection. Both AAE and VAE detect group anomalies using point-wise input data where group memberships are known a priori. We conduct extensive experiments to evaluate our models on real world datasets. The empirical results demonstrate that our approach is effective and robust in detecting group anomalies. Code related to this paper is available at: https://github.com/raghavchalapathy/gad, https://www.cs.cmu.edu/~lxiong/gad/gad.html, https://github.com/jorjasso/SMDD-group-anomaly-detection, https://github.com/cjlin1/libsvm.
Bibliography:R. Chalapathy and E. Toth—Equal contribution.
ISBN:9783030109240
3030109240
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-030-10925-7_11