Streaming Algorithms for Submodular Function Maximization
We consider the problem of maximizing a nonnegative submodular set function f:2N→R+ $$f:2^{\mathcal {N}} \rightarrow \mathbb {R}^+$$ subject to a p-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and mo...
Saved in:
Published in | Automata, Languages, and Programming Vol. 9134; pp. 318 - 330 |
---|---|
Main Authors | , , |
Format | Book Chapter |
Language | English |
Published |
Germany
Springer Berlin / Heidelberg
01.01.2015
Springer Berlin Heidelberg |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | We consider the problem of maximizing a nonnegative submodular set function f:2N→R+ $$f:2^{\mathcal {N}} \rightarrow \mathbb {R}^+$$ subject to a p-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are non-monotone. We describe deterministic and randomized algorithms that obtain a Ω(1p) $$\varOmega (\frac{1}{p})$$ -approximation using O(klogk) $$O(k \log k)$$ -space, where k is an upper bound on the cardinality of the desired set. The model assumes value oracle access to f and membership oracles for the matroids defining the p-matchoid constraint. |
---|---|
Bibliography: | Original Abstract: We consider the problem of maximizing a nonnegative submodular set function f:2N→R+\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$f:2^{\mathcal {N}} \rightarrow \mathbb {R}^+$$\end{document} subject to a p-matchoid constraint in the single-pass streaming setting. Previous work in this context has considered streaming algorithms for modular functions and monotone submodular functions. The main result is for submodular functions that are non-monotone. We describe deterministic and randomized algorithms that obtain a Ω(1p)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varOmega (\frac{1}{p})$$\end{document}-approximation using O(klogk)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(k \log k)$$\end{document}-space, where k is an upper bound on the cardinality of the desired set. The model assumes value oracle access to f and membership oracles for the matroids defining the p-matchoid constraint. C. Chekuri—Work on this paper supported in part by NSF grant CCF-1319376.S. Gupta—Work on this paper supported in part by NSF grant CCF-1319376. K. Quanrud—Work on this paper supported in part by NSF grants CCF-1319376, CCF-1421231, and CCF-1217462. |
ISBN: | 9783662476710 3662476711 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/978-3-662-47672-7_26 |