非症候群性遺伝性難聴に報告された, 前庭症状と原因遺伝子のデータベース・文献的検討

「緒言」近年数多く報告されている遺伝性難聴家系のなかには, 前庭症状をきたす家系もある. これらの家系において, 前庭症状の原因と考えられる遺伝子が同定されれば, 次にはその遺伝子・蛋白質の機能を研究することが可能になる. そしてこれらの試みはめまいの病態を分子レベルで解明し, 予防・治療法を検討することにつながりうる. 遺伝性難聴については近年, 次世代シークエンサーにより, 臨床検体DNAからヒトの全遺伝子配列を解析することが可能となった. 我が国では2008年から先天性難聴の遺伝子診断が保険収載されており, 現在では19遺伝子の154変異を日常臨床の場で検討することが可能となっている....

Full description

Saved in:
Bibliographic Details
Published inEquilibrium Research Vol. 80; no. 2; pp. 63 - 74
Main Authors 池園, 哲郎, 前田, 幸英
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本めまい平衡医学会 30.04.2021
日本めまい平衡医学会
Online AccessGet full text
ISSN0385-5716
1882-577X
DOI10.3757/jser.80.63

Cover

Abstract 「緒言」近年数多く報告されている遺伝性難聴家系のなかには, 前庭症状をきたす家系もある. これらの家系において, 前庭症状の原因と考えられる遺伝子が同定されれば, 次にはその遺伝子・蛋白質の機能を研究することが可能になる. そしてこれらの試みはめまいの病態を分子レベルで解明し, 予防・治療法を検討することにつながりうる. 遺伝性難聴については近年, 次世代シークエンサーにより, 臨床検体DNAからヒトの全遺伝子配列を解析することが可能となった. 我が国では2008年から先天性難聴の遺伝子診断が保険収載されており, 現在では19遺伝子の154変異を日常臨床の場で検討することが可能となっている. この間2010年には次世代シークエンサーによる難聴の遺伝子診断が初めて報告された. この技術開発により, 2010年以後には遺伝性難聴家系で, まれな遺伝子変異が多数同定されるようになった. 非症候群性遺伝性難聴とは, 難聴(およびめまい)のみの臨床症状を呈する遺伝性難聴である.
AbstractList 「緒言」近年数多く報告されている遺伝性難聴家系のなかには, 前庭症状をきたす家系もある. これらの家系において, 前庭症状の原因と考えられる遺伝子が同定されれば, 次にはその遺伝子・蛋白質の機能を研究することが可能になる. そしてこれらの試みはめまいの病態を分子レベルで解明し, 予防・治療法を検討することにつながりうる. 遺伝性難聴については近年, 次世代シークエンサーにより, 臨床検体DNAからヒトの全遺伝子配列を解析することが可能となった. 我が国では2008年から先天性難聴の遺伝子診断が保険収載されており, 現在では19遺伝子の154変異を日常臨床の場で検討することが可能となっている. この間2010年には次世代シークエンサーによる難聴の遺伝子診断が初めて報告された. この技術開発により, 2010年以後には遺伝性難聴家系で, まれな遺伝子変異が多数同定されるようになった. 非症候群性遺伝性難聴とは, 難聴(およびめまい)のみの臨床症状を呈する遺伝性難聴である.
Author 池園, 哲郎
前田, 幸英
Author_xml – sequence: 1
  fullname: 池園, 哲郎
  organization: 埼玉医科大学耳鼻咽喉科
– sequence: 1
  fullname: 前田, 幸英
  organization: 岡山大学大学院医歯薬学総合研究科耳鼻咽喉・頭頸部外科学
BookMark eNo1kM1KHEEUhQsx4MS4yRP4AM5466erqhcugiQqCG4MuCuqu8vYzUyPdBvEne0Ig6KiCw1qjIKCQlAIiOAPycOUPa1vYZtJFvfcw4XzHbhvUW_cjA1C7zHUqHDEcJSapCahxmkPqmApSdURYqYXVYBKp_SY96GBNA09YJQ7EgOuoMXnox_Ft3a-vF_8Pussnz9nd48PR6_m8PQpu7bZz_zkV76zbrNdu7Jhs-OhwXxtM7-7LEPF-o3NLvKt4_zwpJvLL7dtdmVbbdt6sCt_bGv_r7m1rfvOXrvYuCoOVjtn358utt6hN7O6npqBf7sfff70cXp0vDo5NTYx-mGyGlFwocqYpIZ5PhPcdbBmgQhmHcokAcENJYB9x2gGkogAiPSwA8w3rudRJlyPBx7tR2NdbsMEoa_rzbgexkZFza9JXPYqY3jDzJlQESBYAUgAorrDaSmCUeEC46QkjXRJUbqgvxg1n4QNnSwpnSyEfr1Elt9XEhR5lTL7_-7P6URFmr4AUIqneQ
ContentType Journal Article
Copyright 2021 一般社団法人 日本めまい平衡医学会
Copyright_xml – notice: 2021 一般社団法人 日本めまい平衡医学会
CorporateAuthor 埼玉医科大学耳鼻咽喉科
岡山大学大学院医歯薬学総合研究科耳鼻咽喉・頭頸部外科学
CorporateAuthor_xml – name: 埼玉医科大学耳鼻咽喉科
– name: 岡山大学大学院医歯薬学総合研究科耳鼻咽喉・頭頸部外科学
DOI 10.3757/jser.80.63
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1882-577X
EndPage 74
ExternalDocumentID ee6mehei_2021_008002_002_0063_00743790462
article_jser_80_2_80_63_article_char_ja
GroupedDBID 5GY
ACPRK
ALMA_UNASSIGNED_HOLDINGS
CS3
DIK
JSF
JSH
KQ8
MOJWN
P2P
RJT
RZJ
ID FETCH-LOGICAL-j3090-4483e4bc476951a4d7df53482076e3201c5ea40827d028b1504ce9bb3479b6db3
ISSN 0385-5716
IngestDate Thu Jul 10 16:19:05 EDT 2025
Wed Sep 03 06:30:54 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j3090-4483e4bc476951a4d7df53482076e3201c5ea40827d028b1504ce9bb3479b6db3
OpenAccessLink https://www.jstage.jst.go.jp/article/jser/80/2/80_63/_article/-char/ja
PageCount 12
ParticipantIDs medicalonline_journals_ee6mehei_2021_008002_002_0063_00743790462
jstage_primary_article_jser_80_2_80_63_article_char_ja
PublicationCentury 2000
PublicationDate 2021/04/30
PublicationDateYYYYMMDD 2021-04-30
PublicationDate_xml – month: 04
  year: 2021
  text: 2021/04/30
  day: 30
PublicationDecade 2020
PublicationTitle Equilibrium Research
PublicationTitleAlternate Equilibrium Res
PublicationYear 2021
Publisher 一般社団法人 日本めまい平衡医学会
日本めまい平衡医学会
Publisher_xml – name: 一般社団法人 日本めまい平衡医学会
– name: 日本めまい平衡医学会
References 60) Schwander M, Sczaniecka A, Grillet N, et al.: A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J Neurosci 27: 2163-2175, 2007
50) Odeh H, Hunker KL, Belyantseva IA, et al.: Mutations in Grxcr1 are the basis for inner ear dysfunction in the pirouette mouse. Am J Hum Genet 86: 148-160, 2010
64) Seco CZ, Oonk AM, Dominguez-Ruiz M, et al.: Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur J Hum Genet 23: 189-194, 2015
52) Zheng L, Sekerkova G, Vranich K, et al.: The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102: 377-385, 2000
30) Li XC, Everett LA, Lalwani AK, et al.: A mutation in PDS causes non-syndromic recessive deafness. Nat Genet 18: 215-217, 1998
37) Verpy E, Leibovici M, Michalski N, et al.: Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. J Comp Neurol 519: 194-210, 2011
3) Marres H, van Ewijk M, Huygen P, et al.: Inherited nonsyndromic hearing loss. An audiovestibular study in a large family with autosomal dominant progressive hearing loss related to DFNA2. Arch Otolaryngol Head Neck Surg 123: 573-577, 1997
26) Zazo Seco C, Serrao de Castro L, van Nierop JW, et al.: Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2. Am J Hum Genet 97: 647-660, 2015
56) Avraham KB, Hasson T, Steel KP, et al.: The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11: 369-375, 1995
42) Verpy E, Leibovici M, Zwaenepoel I, et al.: A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 26: 51-55, 2000
71) Roman-Naranjo P, Gallego-Martinez A, Soto-Varela A, et al.: Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease. Ear Hear 2020
62) Seifert RA, Coats SA, Oganesian A, et al.: PTPRQ is a novel phosphatidylinositol phosphatase that can be expressed as a cytoplasmic protein or as a subcellularly localized receptor-like protein. Exp Cell Res 287: 374-386, 2003
10) Merchant SN, Linthicum FH, Nadol JB Jr: Histopathology of the inner ear in DFNA9. Adv Otorhinolaryngol 56: 212-217, 2000
38) Verpy E, Weil D, Leibovici M, et al.: Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456: 255-258, 2008
68) de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, et al.: Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267: 685-688, 1995
20) McGuirt WT, Prasad SD, Griffith AJ, et al.: Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 23: 413-419, 1999
28) Mutai H, Wasano K, Momozawa Y, et al.: Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genet 16: e1008643, 2020
4) Wesdorp M, de Koning Gans PAM, Schraders M, et al.: Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction. Hum Genet 137: 389-400, 2018
16) Weil D, Kussel P, Blanchard S, et al.: The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 16: 191-193, 1997
45) Ahmed ZM, Riazuddin S, Ahmad J, et al.: PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 12: 3215-3223, 2003
14) Liu XZ, Walsh J, Tamagawa Y, et al.: Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet 17: 268-269, 1997
53) Ahmed ZM, Morell RJ, Riazuddin S, et al.: Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 72: 1315-1322, 2003
61) Schraders M, Oostrik J, Huygen PL, et al.: Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet 86: 604-610, 2010
27) Amyere M, Vogt T, Hoo J, et al.: KITLG mutations cause familial progressive hyper- and hypopigmentation. J Invest Dermatol 131: 1234-1239, 2011
29) Delpire E, Lu J, England R, et al.: Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22: 192-195, 1999
69) Vore AP, Chang EH, Hoppe JE, et al.: Deletion of and novel missense mutation in POU3F4 in 2 families segregating X-linked nonsyndromic deafness. Arch Otolaryngol Head Neck Surg 131: 1057-1063, 2005
25) Matsushita T, Hayashi H, Kunishima S, et al.: Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. Biochem Biophys Res Commun 325: 1163-1171, 2004
66) Diaz-Horta O, Abad C, Sennaroglu L, et al.: ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proc Natl Acad Sci U S A 113: 5993-5998, 2016
57) Wong EY, Xu CY, Brahmachary M, et al.: A Novel ENU-Induced Mutation in Myo6 Causes Vestibular Dysfunction and Deafness. PLoS One 11: e0154984, 2016
39) Schraders M, Ruiz-Palmero L, Kalay E, et al.: Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. Am J Hum Genet 91: 883-889, 2012
54) Rock RS, Rice SE, Wells AL, et al.: Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 98: 13655-13659, 2001
67) Rohacek AM, Bebee TW, Tilton RK, et al.: ESRP1 Mutations Cause Hearing Loss due to Defects in Alternative Splicing that Disrupt Cochlear Development. Dev Cell 43: 318-331 e315, 2017
9) Usami S, Takahashi K, Yuge I, et al.: Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Meniere's disease. Eur J Hum Genet 11: 744-748, 2003
7) Robertson NG, Lu L, Heller S, et al.: Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat Genet 20: 299-303, 1998
70) Minowa O, Ikeda K, Sugitani Y, et al.: Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285: 1408-1411, 1999
33) Jung J, Seo YW, Choi JY, et al.: Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hear Res 335: 33-39, 2016
8) Kim BJ, Kim AR, Han KH, et al.: Distinct vestibular phenotypes in DFNA9 families with COCH variants. Eur Arch Otorhinolaryngol 273: 2993-3002, 2016
34) Everett LA, Belyantseva IA, Noben-Trauth K, et al.: Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10: 153-161, 2001
32) Nishio SY, Usami S: Deafness gene variations in a 1120 nonsyndromic hearing loss cohort: molecular epidemiology and deafness mutation spectrum of patients in Japan. Ann Otol Rhinol Laryngol 124 Suppl 1: 49S-60S, 2015
48) Alagramam KN, Murcia CL, Kwon HY, et al.: The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27: 99-102, 2001
17) Bahloul A, Michel V, Hardelin JP, et al.: Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19: 3557-3565, 2010
49) Schraders M, Lee K, Oostrik J, et al.: Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet 86: 138-147, 2010
73) Lenarduzzi S, Morgan A, Faletra F, et al.: Next generation sequencing study in a cohort of Italian patients with syndromic hearing loss. Hear Res 381: 107769, 2019
41) Ahmed ZM, Smith TN, Riazuddin S, et al.: Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum Genet 110: 527-531, 2002
18) Weil D, Levy G, Sahly I, et al.: Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci U S A 93: 3232-3237, 1996
36) Frykholm C, Klar J, Tomanovic T, et al.: Stereocilin gene variants associated with episodic vertigo: expansion of the DFNB16 phenotype. Eur J Hum Genet 26: 1871-1874, 2018
44) Johnson KR, Gagnon LH, Webb LS, et al.: Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 12: 3075-3086, 2003
58) Delmaghani S, del Castillo FJ, Michel V, et al.: Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38: 770-778, 2006
55) Heidrych P, Zimmermann U, Kuhn S, et al.: Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum Mol Genet 18: 2779-2790, 2009
2) Kharkovets T, Hardelin JP, Safieddine S, et al.: KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A 97: 4333-4338, 2000
23) Saez CG, Myers JC, Shows TB, et al.: Human nonmuscle myosin heavy chain mRNA: generation of diversity through alternative polyadenylylation. Proc Natl Acad Sci U S A 87: 1164-1168, 1990
46) Alagramam KN, Yuan H, Kuehn MH, et al.: Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 10: 1709-1718, 2001
65) Gagnon LH, Longo-Guess CM, Berryman M, et al.: The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J Neurosci 26: 10188-10198, 2006
19) Gibson F, Walsh J, Mb
References_xml – reference: 8) Kim BJ, Kim AR, Han KH, et al.: Distinct vestibular phenotypes in DFNA9 families with COCH variants. Eur Arch Otorhinolaryngol 273: 2993-3002, 2016
– reference: 54) Rock RS, Rice SE, Wells AL, et al.: Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 98: 13655-13659, 2001
– reference: 7) Robertson NG, Lu L, Heller S, et al.: Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat Genet 20: 299-303, 1998
– reference: 64) Seco CZ, Oonk AM, Dominguez-Ruiz M, et al.: Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur J Hum Genet 23: 189-194, 2015
– reference: 20) McGuirt WT, Prasad SD, Griffith AJ, et al.: Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 23: 413-419, 1999
– reference: 67) Rohacek AM, Bebee TW, Tilton RK, et al.: ESRP1 Mutations Cause Hearing Loss due to Defects in Alternative Splicing that Disrupt Cochlear Development. Dev Cell 43: 318-331 e315, 2017
– reference: 21) Vikkula M, Mariman EC, Lui VC, et al.: Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell 80: 431-437, 1995
– reference: 4) Wesdorp M, de Koning Gans PAM, Schraders M, et al.: Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction. Hum Genet 137: 389-400, 2018
– reference: 60) Schwander M, Sczaniecka A, Grillet N, et al.: A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J Neurosci 27: 2163-2175, 2007
– reference: 32) Nishio SY, Usami S: Deafness gene variations in a 1120 nonsyndromic hearing loss cohort: molecular epidemiology and deafness mutation spectrum of patients in Japan. Ann Otol Rhinol Laryngol 124 Suppl 1: 49S-60S, 2015
– reference: 14) Liu XZ, Walsh J, Tamagawa Y, et al.: Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet 17: 268-269, 1997
– reference: 58) Delmaghani S, del Castillo FJ, Michel V, et al.: Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38: 770-778, 2006
– reference: 5) Mann ZF, Galvez H, Pedreno D, et al.: Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. Elife 6: 2017
– reference: 73) Lenarduzzi S, Morgan A, Faletra F, et al.: Next generation sequencing study in a cohort of Italian patients with syndromic hearing loss. Hear Res 381: 107769, 2019
– reference: 16) Weil D, Kussel P, Blanchard S, et al.: The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 16: 191-193, 1997
– reference: 2) Kharkovets T, Hardelin JP, Safieddine S, et al.: KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A 97: 4333-4338, 2000
– reference: 6) Steffes G, Lorente-Canovas B, Pearson S, et al.: Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects. PLoS One 7: e51065, 2012
– reference: 43) Adato A, Michel V, Kikkawa Y, et al.: Interactions in the network of Usher syndrome type 1 proteins. Hum Mol Genet 14: 347-356, 2005
– reference: 39) Schraders M, Ruiz-Palmero L, Kalay E, et al.: Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. Am J Hum Genet 91: 883-889, 2012
– reference: 57) Wong EY, Xu CY, Brahmachary M, et al.: A Novel ENU-Induced Mutation in Myo6 Causes Vestibular Dysfunction and Deafness. PLoS One 11: e0154984, 2016
– reference: 1) Shearer AE, DeLuca AP, Hildebrand MS, et al.: Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A 107: 21104-21109, 2010
– reference: 27) Amyere M, Vogt T, Hoo J, et al.: KITLG mutations cause familial progressive hyper- and hypopigmentation. J Invest Dermatol 131: 1234-1239, 2011
– reference: 33) Jung J, Seo YW, Choi JY, et al.: Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hear Res 335: 33-39, 2016
– reference: 62) Seifert RA, Coats SA, Oganesian A, et al.: PTPRQ is a novel phosphatidylinositol phosphatase that can be expressed as a cytoplasmic protein or as a subcellularly localized receptor-like protein. Exp Cell Res 287: 374-386, 2003
– reference: 72) Ideura M, Nishio SY, Moteki H, et al.: Comprehensive analysis of syndromic hearing loss patients in Japan. Sci Rep 9: 11976, 2019
– reference: 15) Liu XZ, Walsh J, Mburu P, et al.: Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet 16: 188-190, 1997
– reference: 69) Vore AP, Chang EH, Hoppe JE, et al.: Deletion of and novel missense mutation in POU3F4 in 2 families segregating X-linked nonsyndromic deafness. Arch Otolaryngol Head Neck Surg 131: 1057-1063, 2005
– reference: 24) Lalwani AK, Atkin G, Li Y, et al.: Localization in stereocilia, plasma membrane, and mitochondria suggests diverse roles for NMHC-IIa within cochlear hair cells. Brain Res 1197: 13-22, 2008
– reference: 34) Everett LA, Belyantseva IA, Noben-Trauth K, et al.: Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10: 153-161, 2001
– reference: 37) Verpy E, Leibovici M, Michalski N, et al.: Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. J Comp Neurol 519: 194-210, 2011
– reference: 63) Yariz KO, Duman D, Zazo Seco C, et al.: Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. Am J Hum Genet 91: 872-882, 2012
– reference: 61) Schraders M, Oostrik J, Huygen PL, et al.: Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet 86: 604-610, 2010
– reference: 59) Ebermann I, Walger M, Scholl HP, et al.: Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction. Hum Mutat 28: 571-577, 2007
– reference: 66) Diaz-Horta O, Abad C, Sennaroglu L, et al.: ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proc Natl Acad Sci U S A 113: 5993-5998, 2016
– reference: 22) Lalwani AK, Goldstein JA, Kelley MJ, et al.: Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. Am J Hum Genet 67: 1121-1128, 2000
– reference: 30) Li XC, Everett LA, Lalwani AK, et al.: A mutation in PDS causes non-syndromic recessive deafness. Nat Genet 18: 215-217, 1998
– reference: 11) Burgess BJ, O'Malley JT, Kamakura T, et al.: Histopathology of the Human Inner Ear in the p.L114P COCH Mutation (DFNA9). Audiol Neurootol 21: 88-97, 2016
– reference: 41) Ahmed ZM, Smith TN, Riazuddin S, et al.: Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum Genet 110: 527-531, 2002
– reference: 17) Bahloul A, Michel V, Hardelin JP, et al.: Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19: 3557-3565, 2010
– reference: 47) Kazmierczak P, Sakaguchi H, Tokita J, et al.: Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449: 87-91, 2007
– reference: 13) 池園哲郎, 福島邦博, 松田 帆 : Ⅲ各論 3. 外リンパ瘻.『急性感音難聴診療の手引き』 日本聴覚医学会編. 72-82頁, 金原出版, 東京, 2018
– reference: 65) Gagnon LH, Longo-Guess CM, Berryman M, et al.: The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J Neurosci 26: 10188-10198, 2006
– reference: 18) Weil D, Levy G, Sahly I, et al.: Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci U S A 93: 3232-3237, 1996
– reference: 49) Schraders M, Lee K, Oostrik J, et al.: Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet 86: 138-147, 2010
– reference: 38) Verpy E, Weil D, Leibovici M, et al.: Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456: 255-258, 2008
– reference: 68) de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, et al.: Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267: 685-688, 1995
– reference: 26) Zazo Seco C, Serrao de Castro L, van Nierop JW, et al.: Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2. Am J Hum Genet 97: 647-660, 2015
– reference: 53) Ahmed ZM, Morell RJ, Riazuddin S, et al.: Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 72: 1315-1322, 2003
– reference: 12) Ikezono T, Omori A, Ichinose S, et al.: Identification of the protein product of the Coch gene (hereditary deafness gene) as the major component of bovine inner ear protein. Biochim Biophys Acta 1535: 258-265, 2001
– reference: 52) Zheng L, Sekerkova G, Vranich K, et al.: The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102: 377-385, 2000
– reference: 40) Simmler MC, Cohen-Salmon M, El-Amraoui A, et al.: Targeted disruption of otog results in deafness and severe imbalance, Nat Genet 24: 139-143, 2000
– reference: 45) Ahmed ZM, Riazuddin S, Ahmad J, et al.: PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 12: 3215-3223, 2003
– reference: 25) Matsushita T, Hayashi H, Kunishima S, et al.: Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. Biochem Biophys Res Commun 325: 1163-1171, 2004
– reference: 9) Usami S, Takahashi K, Yuge I, et al.: Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Meniere's disease. Eur J Hum Genet 11: 744-748, 2003
– reference: 56) Avraham KB, Hasson T, Steel KP, et al.: The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11: 369-375, 1995
– reference: 42) Verpy E, Leibovici M, Zwaenepoel I, et al.: A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 26: 51-55, 2000
– reference: 29) Delpire E, Lu J, England R, et al.: Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22: 192-195, 1999
– reference: 71) Roman-Naranjo P, Gallego-Martinez A, Soto-Varela A, et al.: Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease. Ear Hear 2020
– reference: 28) Mutai H, Wasano K, Momozawa Y, et al.: Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genet 16: e1008643, 2020
– reference: 46) Alagramam KN, Yuan H, Kuehn MH, et al.: Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 10: 1709-1718, 2001
– reference: 48) Alagramam KN, Murcia CL, Kwon HY, et al.: The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27: 99-102, 2001
– reference: 31) Usami S, Abe S, Weston MD, et al.: Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet 104: 188-192, 1999
– reference: 19) Gibson F, Walsh J, Mburu P, et al.: A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374: 62-64, 1995
– reference: 10) Merchant SN, Linthicum FH, Nadol JB Jr: Histopathology of the inner ear in DFNA9. Adv Otorhinolaryngol 56: 212-217, 2000
– reference: 35) Verpy E, Masmoudi S, Zwaenepoel I, et al.: Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat Genet 29: 345-349, 2001
– reference: 3) Marres H, van Ewijk M, Huygen P, et al.: Inherited nonsyndromic hearing loss. An audiovestibular study in a large family with autosomal dominant progressive hearing loss related to DFNA2. Arch Otolaryngol Head Neck Surg 123: 573-577, 1997
– reference: 70) Minowa O, Ikeda K, Sugitani Y, et al.: Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285: 1408-1411, 1999
– reference: 36) Frykholm C, Klar J, Tomanovic T, et al.: Stereocilin gene variants associated with episodic vertigo: expansion of the DFNB16 phenotype. Eur J Hum Genet 26: 1871-1874, 2018
– reference: 50) Odeh H, Hunker KL, Belyantseva IA, et al.: Mutations in Grxcr1 are the basis for inner ear dysfunction in the pirouette mouse. Am J Hum Genet 86: 148-160, 2010
– reference: 55) Heidrych P, Zimmermann U, Kuhn S, et al.: Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum Mol Genet 18: 2779-2790, 2009
– reference: 44) Johnson KR, Gagnon LH, Webb LS, et al.: Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 12: 3075-3086, 2003
– reference: 51) Naz S, Griffith AJ, Riazuddin S, et al.: Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J Med Genet 41: 591-595, 2004
– reference: 23) Saez CG, Myers JC, Shows TB, et al.: Human nonmuscle myosin heavy chain mRNA: generation of diversity through alternative polyadenylylation. Proc Natl Acad Sci U S A 87: 1164-1168, 1990
SSID ssib043658101
ssib002670962
ssib038076172
ssib058492684
ssib000950432
ssib003171114
ssib012421183
ssj0062567
ssib002670996
ssib002484710
Score 2.264681
Snippet 「緒言」近年数多く報告されている遺伝性難聴家系のなかには, 前庭症状をきたす家系もある. これらの家系において, 前庭症状の原因と考えられる遺伝子が同定されれば, 次にはその遺伝子・蛋白質の機能を研究することが可能になる. そしてこれらの試みはめまいの病態を分子レベルで解明し,...
SourceID medicalonline
jstage
SourceType Publisher
StartPage 63
Title 非症候群性遺伝性難聴に報告された, 前庭症状と原因遺伝子のデータベース・文献的検討
URI https://www.jstage.jst.go.jp/article/jser/80/2/80_63/_article/-char/ja
http://mol.medicalonline.jp/en/journal/download?GoodsID=ee6mehei/2021/008002/002&name=0063-0074j
Volume 80
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX Equilibrium Research, 2021/04/30, Vol.80(2), pp.63-74
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEA-lvggiahW_uQfXF72a7-y-maQpRVEQWuhbuOT20IO2fvQQfer1hGKpRR9Uav0oWLAgLQgiWIv-MfF67X_hzCS5psWHKtyFuc3O7OxvkuzMZXdWUS5Els6rsmaVVSeWZTPmUZnHNVGO4cnHq4aUgmYT3rhpD42Y10at0Z7e04VZS43JqD9-_Nd1Jf9jVSgDu-Iq2X-wbFcoFAAN9oUjWBiO-7IxCwQTA0wELHCYcBgE9oFFcxcElngBc00W2FjiOliZa8xzWWAyz0fG4inhMddgAac6wGUg4Xoo0FWZpyEhNMbd7JSwiNAZ9_OSQbQXaQAtDSABjbkDBeUc5PfsXDqnygFyonQPW_qLlhYKEWrOFRBhkEAiPD9TxRvMSrD_e051SzzstrBzfXwSCBq6jBNYAJnwEQhQjwe73lzca9yhJRKNse6MxfyCRU4ACTtgIb_QczAEtKlTt4xcHtXvwgRtQ1fVvD5o6nEyhAcSi__K6FrhBRPeR4QRRxtiddDYR2nQAbB8BqhBihlkLhNh9dxLBADUs4jwiS01pZZh7AUZgZCkKtG14Wr4QdV9ApIs49q5rdzCsGJwq2w5WpaAPB32MM6yHGe0OC6mO2xl979eGOSyESl1l9I9lvYOxIZDu0fX4Wbr52p_zrErsXl224RYKeRqqOPBNsK8HJcdhnWIfQ7ojkNTMK7fKoQOAnPvFWYEmOhnFVxZTExYSIVJvwupJcFvhmG-OxZpODVC23G1cR8GdO7z36YBrrqmdsdC8NsFJkrKvT4bQgdKzZCjm6ZCRhyu7KAAbm4dgj7M5nFoLH0RmybEKfi0w0eUw1kwWnJTKI4qPfXKMaXPHa9MTow9Kl0s0fRweu_Wpzzcfve-83qmPbXQ-bm8OfVpu7n-e-MdEosft5pfk-bn9tKX9ovZpPkymZ5Lmh8ul9pPn7XXV4GpM_staa605z-0F5dSvvbq86S5lrRmktZGMv0raS0Q8T1p_dh8NdOZW-u8ebK5_HZrZf64MjIYDPtD5WzXlnLdUIVaNk1uSDOKTceG6K1iVp1qzcIUWgCoNCDeiC1ZwW3unSrENhEEpGYsRRThkvbIrkbGCaV3fGJcnlRKWmTZFaHXatwyTVWrcM6FVXWkWquKWBrylGKncIZ309Q84T6vqVPK1V3wh9lD_UEopT0mb8s7Id7UYRpPh-kXxFDA5Qhc0H_6f9s-oxzceWCcVXon7zfkOQhsJqPzdIX_ASkpHbg
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%9E%E7%97%87%E5%80%99%E7%BE%A4%E6%80%A7%E9%81%BA%E4%BC%9D%E6%80%A7%E9%9B%A3%E8%81%B4%E3%81%AB%E5%A0%B1%E5%91%8A%E3%81%95%E3%82%8C%E3%81%9F%2C+%E5%89%8D%E5%BA%AD%E7%97%87%E7%8A%B6%E3%81%A8%E5%8E%9F%E5%9B%A0%E9%81%BA%E4%BC%9D%E5%AD%90%E3%81%AE%E3%83%87%E3%83%BC%E3%82%BF%E3%83%99%E3%83%BC%E3%82%B9%E3%83%BB%E6%96%87%E7%8C%AE%E7%9A%84%E6%A4%9C%E8%A8%8E&rft.jtitle=Equilibrium+Research&rft.au=%E6%B1%A0%E5%9C%92%2C+%E5%93%B2%E9%83%8E&rft.au=%E5%89%8D%E7%94%B0%2C+%E5%B9%B8%E8%8B%B1&rft.date=2021-04-30&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E3%82%81%E3%81%BE%E3%81%84%E5%B9%B3%E8%A1%A1%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=0385-5716&rft.eissn=1882-577X&rft.volume=80&rft.issue=2&rft.spage=63&rft.epage=74&rft_id=info:doi/10.3757%2Fjser.80.63&rft.externalDocID=article_jser_80_2_80_63_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0385-5716&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0385-5716&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0385-5716&client=summon