非症候群性遺伝性難聴に報告された, 前庭症状と原因遺伝子のデータベース・文献的検討
「緒言」近年数多く報告されている遺伝性難聴家系のなかには, 前庭症状をきたす家系もある. これらの家系において, 前庭症状の原因と考えられる遺伝子が同定されれば, 次にはその遺伝子・蛋白質の機能を研究することが可能になる. そしてこれらの試みはめまいの病態を分子レベルで解明し, 予防・治療法を検討することにつながりうる. 遺伝性難聴については近年, 次世代シークエンサーにより, 臨床検体DNAからヒトの全遺伝子配列を解析することが可能となった. 我が国では2008年から先天性難聴の遺伝子診断が保険収載されており, 現在では19遺伝子の154変異を日常臨床の場で検討することが可能となっている....
Saved in:
Published in | Equilibrium Research Vol. 80; no. 2; pp. 63 - 74 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | Japanese |
Published |
一般社団法人 日本めまい平衡医学会
30.04.2021
日本めまい平衡医学会 |
Online Access | Get full text |
ISSN | 0385-5716 1882-577X |
DOI | 10.3757/jser.80.63 |
Cover
Abstract | 「緒言」近年数多く報告されている遺伝性難聴家系のなかには, 前庭症状をきたす家系もある. これらの家系において, 前庭症状の原因と考えられる遺伝子が同定されれば, 次にはその遺伝子・蛋白質の機能を研究することが可能になる. そしてこれらの試みはめまいの病態を分子レベルで解明し, 予防・治療法を検討することにつながりうる. 遺伝性難聴については近年, 次世代シークエンサーにより, 臨床検体DNAからヒトの全遺伝子配列を解析することが可能となった. 我が国では2008年から先天性難聴の遺伝子診断が保険収載されており, 現在では19遺伝子の154変異を日常臨床の場で検討することが可能となっている. この間2010年には次世代シークエンサーによる難聴の遺伝子診断が初めて報告された. この技術開発により, 2010年以後には遺伝性難聴家系で, まれな遺伝子変異が多数同定されるようになった. 非症候群性遺伝性難聴とは, 難聴(およびめまい)のみの臨床症状を呈する遺伝性難聴である. |
---|---|
AbstractList | 「緒言」近年数多く報告されている遺伝性難聴家系のなかには, 前庭症状をきたす家系もある. これらの家系において, 前庭症状の原因と考えられる遺伝子が同定されれば, 次にはその遺伝子・蛋白質の機能を研究することが可能になる. そしてこれらの試みはめまいの病態を分子レベルで解明し, 予防・治療法を検討することにつながりうる. 遺伝性難聴については近年, 次世代シークエンサーにより, 臨床検体DNAからヒトの全遺伝子配列を解析することが可能となった. 我が国では2008年から先天性難聴の遺伝子診断が保険収載されており, 現在では19遺伝子の154変異を日常臨床の場で検討することが可能となっている. この間2010年には次世代シークエンサーによる難聴の遺伝子診断が初めて報告された. この技術開発により, 2010年以後には遺伝性難聴家系で, まれな遺伝子変異が多数同定されるようになった. 非症候群性遺伝性難聴とは, 難聴(およびめまい)のみの臨床症状を呈する遺伝性難聴である. |
Author | 池園, 哲郎 前田, 幸英 |
Author_xml | – sequence: 1 fullname: 池園, 哲郎 organization: 埼玉医科大学耳鼻咽喉科 – sequence: 1 fullname: 前田, 幸英 organization: 岡山大学大学院医歯薬学総合研究科耳鼻咽喉・頭頸部外科学 |
BookMark | eNo1kM1KHEEUhQsx4MS4yRP4AM5466erqhcugiQqCG4MuCuqu8vYzUyPdBvEne0Ig6KiCw1qjIKCQlAIiOAPycOUPa1vYZtJFvfcw4XzHbhvUW_cjA1C7zHUqHDEcJSapCahxmkPqmApSdURYqYXVYBKp_SY96GBNA09YJQ7EgOuoMXnox_Ft3a-vF_8Pussnz9nd48PR6_m8PQpu7bZz_zkV76zbrNdu7Jhs-OhwXxtM7-7LEPF-o3NLvKt4_zwpJvLL7dtdmVbbdt6sCt_bGv_r7m1rfvOXrvYuCoOVjtn358utt6hN7O6npqBf7sfff70cXp0vDo5NTYx-mGyGlFwocqYpIZ5PhPcdbBmgQhmHcokAcENJYB9x2gGkogAiPSwA8w3rudRJlyPBx7tR2NdbsMEoa_rzbgexkZFza9JXPYqY3jDzJlQESBYAUgAorrDaSmCUeEC46QkjXRJUbqgvxg1n4QNnSwpnSyEfr1Elt9XEhR5lTL7_-7P6URFmr4AUIqneQ |
ContentType | Journal Article |
Copyright | 2021 一般社団法人 日本めまい平衡医学会 |
Copyright_xml | – notice: 2021 一般社団法人 日本めまい平衡医学会 |
CorporateAuthor | 埼玉医科大学耳鼻咽喉科 岡山大学大学院医歯薬学総合研究科耳鼻咽喉・頭頸部外科学 |
CorporateAuthor_xml | – name: 埼玉医科大学耳鼻咽喉科 – name: 岡山大学大学院医歯薬学総合研究科耳鼻咽喉・頭頸部外科学 |
DOI | 10.3757/jser.80.63 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 1882-577X |
EndPage | 74 |
ExternalDocumentID | ee6mehei_2021_008002_002_0063_00743790462 article_jser_80_2_80_63_article_char_ja |
GroupedDBID | 5GY ACPRK ALMA_UNASSIGNED_HOLDINGS CS3 DIK JSF JSH KQ8 MOJWN P2P RJT RZJ |
ID | FETCH-LOGICAL-j3090-4483e4bc476951a4d7df53482076e3201c5ea40827d028b1504ce9bb3479b6db3 |
ISSN | 0385-5716 |
IngestDate | Thu Jul 10 16:19:05 EDT 2025 Wed Sep 03 06:30:54 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j3090-4483e4bc476951a4d7df53482076e3201c5ea40827d028b1504ce9bb3479b6db3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/jser/80/2/80_63/_article/-char/ja |
PageCount | 12 |
ParticipantIDs | medicalonline_journals_ee6mehei_2021_008002_002_0063_00743790462 jstage_primary_article_jser_80_2_80_63_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 2021/04/30 |
PublicationDateYYYYMMDD | 2021-04-30 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021/04/30 day: 30 |
PublicationDecade | 2020 |
PublicationTitle | Equilibrium Research |
PublicationTitleAlternate | Equilibrium Res |
PublicationYear | 2021 |
Publisher | 一般社団法人 日本めまい平衡医学会 日本めまい平衡医学会 |
Publisher_xml | – name: 一般社団法人 日本めまい平衡医学会 – name: 日本めまい平衡医学会 |
References | 60) Schwander M, Sczaniecka A, Grillet N, et al.: A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J Neurosci 27: 2163-2175, 2007 50) Odeh H, Hunker KL, Belyantseva IA, et al.: Mutations in Grxcr1 are the basis for inner ear dysfunction in the pirouette mouse. Am J Hum Genet 86: 148-160, 2010 64) Seco CZ, Oonk AM, Dominguez-Ruiz M, et al.: Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur J Hum Genet 23: 189-194, 2015 52) Zheng L, Sekerkova G, Vranich K, et al.: The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102: 377-385, 2000 30) Li XC, Everett LA, Lalwani AK, et al.: A mutation in PDS causes non-syndromic recessive deafness. Nat Genet 18: 215-217, 1998 37) Verpy E, Leibovici M, Michalski N, et al.: Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. J Comp Neurol 519: 194-210, 2011 3) Marres H, van Ewijk M, Huygen P, et al.: Inherited nonsyndromic hearing loss. An audiovestibular study in a large family with autosomal dominant progressive hearing loss related to DFNA2. Arch Otolaryngol Head Neck Surg 123: 573-577, 1997 26) Zazo Seco C, Serrao de Castro L, van Nierop JW, et al.: Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2. Am J Hum Genet 97: 647-660, 2015 56) Avraham KB, Hasson T, Steel KP, et al.: The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11: 369-375, 1995 42) Verpy E, Leibovici M, Zwaenepoel I, et al.: A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 26: 51-55, 2000 71) Roman-Naranjo P, Gallego-Martinez A, Soto-Varela A, et al.: Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease. Ear Hear 2020 62) Seifert RA, Coats SA, Oganesian A, et al.: PTPRQ is a novel phosphatidylinositol phosphatase that can be expressed as a cytoplasmic protein or as a subcellularly localized receptor-like protein. Exp Cell Res 287: 374-386, 2003 10) Merchant SN, Linthicum FH, Nadol JB Jr: Histopathology of the inner ear in DFNA9. Adv Otorhinolaryngol 56: 212-217, 2000 38) Verpy E, Weil D, Leibovici M, et al.: Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456: 255-258, 2008 68) de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, et al.: Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267: 685-688, 1995 20) McGuirt WT, Prasad SD, Griffith AJ, et al.: Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 23: 413-419, 1999 28) Mutai H, Wasano K, Momozawa Y, et al.: Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genet 16: e1008643, 2020 4) Wesdorp M, de Koning Gans PAM, Schraders M, et al.: Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction. Hum Genet 137: 389-400, 2018 16) Weil D, Kussel P, Blanchard S, et al.: The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 16: 191-193, 1997 45) Ahmed ZM, Riazuddin S, Ahmad J, et al.: PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 12: 3215-3223, 2003 14) Liu XZ, Walsh J, Tamagawa Y, et al.: Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet 17: 268-269, 1997 53) Ahmed ZM, Morell RJ, Riazuddin S, et al.: Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 72: 1315-1322, 2003 61) Schraders M, Oostrik J, Huygen PL, et al.: Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet 86: 604-610, 2010 27) Amyere M, Vogt T, Hoo J, et al.: KITLG mutations cause familial progressive hyper- and hypopigmentation. J Invest Dermatol 131: 1234-1239, 2011 29) Delpire E, Lu J, England R, et al.: Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22: 192-195, 1999 69) Vore AP, Chang EH, Hoppe JE, et al.: Deletion of and novel missense mutation in POU3F4 in 2 families segregating X-linked nonsyndromic deafness. Arch Otolaryngol Head Neck Surg 131: 1057-1063, 2005 25) Matsushita T, Hayashi H, Kunishima S, et al.: Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. Biochem Biophys Res Commun 325: 1163-1171, 2004 66) Diaz-Horta O, Abad C, Sennaroglu L, et al.: ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proc Natl Acad Sci U S A 113: 5993-5998, 2016 57) Wong EY, Xu CY, Brahmachary M, et al.: A Novel ENU-Induced Mutation in Myo6 Causes Vestibular Dysfunction and Deafness. PLoS One 11: e0154984, 2016 39) Schraders M, Ruiz-Palmero L, Kalay E, et al.: Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. Am J Hum Genet 91: 883-889, 2012 54) Rock RS, Rice SE, Wells AL, et al.: Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 98: 13655-13659, 2001 67) Rohacek AM, Bebee TW, Tilton RK, et al.: ESRP1 Mutations Cause Hearing Loss due to Defects in Alternative Splicing that Disrupt Cochlear Development. Dev Cell 43: 318-331 e315, 2017 9) Usami S, Takahashi K, Yuge I, et al.: Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Meniere's disease. Eur J Hum Genet 11: 744-748, 2003 7) Robertson NG, Lu L, Heller S, et al.: Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat Genet 20: 299-303, 1998 70) Minowa O, Ikeda K, Sugitani Y, et al.: Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285: 1408-1411, 1999 33) Jung J, Seo YW, Choi JY, et al.: Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hear Res 335: 33-39, 2016 8) Kim BJ, Kim AR, Han KH, et al.: Distinct vestibular phenotypes in DFNA9 families with COCH variants. Eur Arch Otorhinolaryngol 273: 2993-3002, 2016 34) Everett LA, Belyantseva IA, Noben-Trauth K, et al.: Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10: 153-161, 2001 32) Nishio SY, Usami S: Deafness gene variations in a 1120 nonsyndromic hearing loss cohort: molecular epidemiology and deafness mutation spectrum of patients in Japan. Ann Otol Rhinol Laryngol 124 Suppl 1: 49S-60S, 2015 48) Alagramam KN, Murcia CL, Kwon HY, et al.: The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27: 99-102, 2001 17) Bahloul A, Michel V, Hardelin JP, et al.: Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19: 3557-3565, 2010 49) Schraders M, Lee K, Oostrik J, et al.: Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet 86: 138-147, 2010 73) Lenarduzzi S, Morgan A, Faletra F, et al.: Next generation sequencing study in a cohort of Italian patients with syndromic hearing loss. Hear Res 381: 107769, 2019 41) Ahmed ZM, Smith TN, Riazuddin S, et al.: Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum Genet 110: 527-531, 2002 18) Weil D, Levy G, Sahly I, et al.: Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci U S A 93: 3232-3237, 1996 36) Frykholm C, Klar J, Tomanovic T, et al.: Stereocilin gene variants associated with episodic vertigo: expansion of the DFNB16 phenotype. Eur J Hum Genet 26: 1871-1874, 2018 44) Johnson KR, Gagnon LH, Webb LS, et al.: Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 12: 3075-3086, 2003 58) Delmaghani S, del Castillo FJ, Michel V, et al.: Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38: 770-778, 2006 55) Heidrych P, Zimmermann U, Kuhn S, et al.: Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum Mol Genet 18: 2779-2790, 2009 2) Kharkovets T, Hardelin JP, Safieddine S, et al.: KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A 97: 4333-4338, 2000 23) Saez CG, Myers JC, Shows TB, et al.: Human nonmuscle myosin heavy chain mRNA: generation of diversity through alternative polyadenylylation. Proc Natl Acad Sci U S A 87: 1164-1168, 1990 46) Alagramam KN, Yuan H, Kuehn MH, et al.: Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 10: 1709-1718, 2001 65) Gagnon LH, Longo-Guess CM, Berryman M, et al.: The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J Neurosci 26: 10188-10198, 2006 19) Gibson F, Walsh J, Mb |
References_xml | – reference: 8) Kim BJ, Kim AR, Han KH, et al.: Distinct vestibular phenotypes in DFNA9 families with COCH variants. Eur Arch Otorhinolaryngol 273: 2993-3002, 2016 – reference: 54) Rock RS, Rice SE, Wells AL, et al.: Myosin VI is a processive motor with a large step size. Proc Natl Acad Sci U S A 98: 13655-13659, 2001 – reference: 7) Robertson NG, Lu L, Heller S, et al.: Mutations in a novel cochlear gene cause DFNA9, a human nonsyndromic deafness with vestibular dysfunction. Nat Genet 20: 299-303, 1998 – reference: 64) Seco CZ, Oonk AM, Dominguez-Ruiz M, et al.: Progressive hearing loss and vestibular dysfunction caused by a homozygous nonsense mutation in CLIC5. Eur J Hum Genet 23: 189-194, 2015 – reference: 20) McGuirt WT, Prasad SD, Griffith AJ, et al.: Mutations in COL11A2 cause non-syndromic hearing loss (DFNA13). Nat Genet 23: 413-419, 1999 – reference: 67) Rohacek AM, Bebee TW, Tilton RK, et al.: ESRP1 Mutations Cause Hearing Loss due to Defects in Alternative Splicing that Disrupt Cochlear Development. Dev Cell 43: 318-331 e315, 2017 – reference: 21) Vikkula M, Mariman EC, Lui VC, et al.: Autosomal dominant and recessive osteochondrodysplasias associated with the COL11A2 locus. Cell 80: 431-437, 1995 – reference: 4) Wesdorp M, de Koning Gans PAM, Schraders M, et al.: Heterozygous missense variants of LMX1A lead to nonsyndromic hearing impairment and vestibular dysfunction. Hum Genet 137: 389-400, 2018 – reference: 60) Schwander M, Sczaniecka A, Grillet N, et al.: A forward genetics screen in mice identifies recessive deafness traits and reveals that pejvakin is essential for outer hair cell function. J Neurosci 27: 2163-2175, 2007 – reference: 32) Nishio SY, Usami S: Deafness gene variations in a 1120 nonsyndromic hearing loss cohort: molecular epidemiology and deafness mutation spectrum of patients in Japan. Ann Otol Rhinol Laryngol 124 Suppl 1: 49S-60S, 2015 – reference: 14) Liu XZ, Walsh J, Tamagawa Y, et al.: Autosomal dominant non-syndromic deafness caused by a mutation in the myosin VIIA gene. Nat Genet 17: 268-269, 1997 – reference: 58) Delmaghani S, del Castillo FJ, Michel V, et al.: Mutations in the gene encoding pejvakin, a newly identified protein of the afferent auditory pathway, cause DFNB59 auditory neuropathy. Nat Genet 38: 770-778, 2006 – reference: 5) Mann ZF, Galvez H, Pedreno D, et al.: Shaping of inner ear sensory organs through antagonistic interactions between Notch signalling and Lmx1a. Elife 6: 2017 – reference: 73) Lenarduzzi S, Morgan A, Faletra F, et al.: Next generation sequencing study in a cohort of Italian patients with syndromic hearing loss. Hear Res 381: 107769, 2019 – reference: 16) Weil D, Kussel P, Blanchard S, et al.: The autosomal recessive isolated deafness, DFNB2, and the Usher 1B syndrome are allelic defects of the myosin-VIIA gene. Nat Genet 16: 191-193, 1997 – reference: 2) Kharkovets T, Hardelin JP, Safieddine S, et al.: KCNQ4, a K+ channel mutated in a form of dominant deafness, is expressed in the inner ear and the central auditory pathway. Proc Natl Acad Sci U S A 97: 4333-4338, 2000 – reference: 6) Steffes G, Lorente-Canovas B, Pearson S, et al.: Mutanlallemand (mtl) and Belly Spot and Deafness (bsd) are two new mutations of Lmx1a causing severe cochlear and vestibular defects. PLoS One 7: e51065, 2012 – reference: 43) Adato A, Michel V, Kikkawa Y, et al.: Interactions in the network of Usher syndrome type 1 proteins. Hum Mol Genet 14: 347-356, 2005 – reference: 39) Schraders M, Ruiz-Palmero L, Kalay E, et al.: Mutations of the gene encoding otogelin are a cause of autosomal-recessive nonsyndromic moderate hearing impairment. Am J Hum Genet 91: 883-889, 2012 – reference: 57) Wong EY, Xu CY, Brahmachary M, et al.: A Novel ENU-Induced Mutation in Myo6 Causes Vestibular Dysfunction and Deafness. PLoS One 11: e0154984, 2016 – reference: 1) Shearer AE, DeLuca AP, Hildebrand MS, et al.: Comprehensive genetic testing for hereditary hearing loss using massively parallel sequencing. Proc Natl Acad Sci U S A 107: 21104-21109, 2010 – reference: 27) Amyere M, Vogt T, Hoo J, et al.: KITLG mutations cause familial progressive hyper- and hypopigmentation. J Invest Dermatol 131: 1234-1239, 2011 – reference: 33) Jung J, Seo YW, Choi JY, et al.: Vestibular function is associated with residual low-frequency hearing loss in patients with bi-allelic mutations in the SLC26A4 gene. Hear Res 335: 33-39, 2016 – reference: 62) Seifert RA, Coats SA, Oganesian A, et al.: PTPRQ is a novel phosphatidylinositol phosphatase that can be expressed as a cytoplasmic protein or as a subcellularly localized receptor-like protein. Exp Cell Res 287: 374-386, 2003 – reference: 72) Ideura M, Nishio SY, Moteki H, et al.: Comprehensive analysis of syndromic hearing loss patients in Japan. Sci Rep 9: 11976, 2019 – reference: 15) Liu XZ, Walsh J, Mburu P, et al.: Mutations in the myosin VIIA gene cause non-syndromic recessive deafness. Nat Genet 16: 188-190, 1997 – reference: 69) Vore AP, Chang EH, Hoppe JE, et al.: Deletion of and novel missense mutation in POU3F4 in 2 families segregating X-linked nonsyndromic deafness. Arch Otolaryngol Head Neck Surg 131: 1057-1063, 2005 – reference: 24) Lalwani AK, Atkin G, Li Y, et al.: Localization in stereocilia, plasma membrane, and mitochondria suggests diverse roles for NMHC-IIa within cochlear hair cells. Brain Res 1197: 13-22, 2008 – reference: 34) Everett LA, Belyantseva IA, Noben-Trauth K, et al.: Targeted disruption of mouse Pds provides insight about the inner-ear defects encountered in Pendred syndrome. Hum Mol Genet 10: 153-161, 2001 – reference: 37) Verpy E, Leibovici M, Michalski N, et al.: Stereocilin connects outer hair cell stereocilia to one another and to the tectorial membrane. J Comp Neurol 519: 194-210, 2011 – reference: 63) Yariz KO, Duman D, Zazo Seco C, et al.: Mutations in OTOGL, encoding the inner ear protein otogelin-like, cause moderate sensorineural hearing loss. Am J Hum Genet 91: 872-882, 2012 – reference: 61) Schraders M, Oostrik J, Huygen PL, et al.: Mutations in PTPRQ are a cause of autosomal-recessive nonsyndromic hearing impairment DFNB84 and associated with vestibular dysfunction. Am J Hum Genet 86: 604-610, 2010 – reference: 59) Ebermann I, Walger M, Scholl HP, et al.: Truncating mutation of the DFNB59 gene causes cochlear hearing impairment and central vestibular dysfunction. Hum Mutat 28: 571-577, 2007 – reference: 66) Diaz-Horta O, Abad C, Sennaroglu L, et al.: ROR1 is essential for proper innervation of auditory hair cells and hearing in humans and mice. Proc Natl Acad Sci U S A 113: 5993-5998, 2016 – reference: 22) Lalwani AK, Goldstein JA, Kelley MJ, et al.: Human nonsyndromic hereditary deafness DFNA17 is due to a mutation in nonmuscle myosin MYH9. Am J Hum Genet 67: 1121-1128, 2000 – reference: 30) Li XC, Everett LA, Lalwani AK, et al.: A mutation in PDS causes non-syndromic recessive deafness. Nat Genet 18: 215-217, 1998 – reference: 11) Burgess BJ, O'Malley JT, Kamakura T, et al.: Histopathology of the Human Inner Ear in the p.L114P COCH Mutation (DFNA9). Audiol Neurootol 21: 88-97, 2016 – reference: 41) Ahmed ZM, Smith TN, Riazuddin S, et al.: Nonsyndromic recessive deafness DFNB18 and Usher syndrome type IC are allelic mutations of USHIC. Hum Genet 110: 527-531, 2002 – reference: 17) Bahloul A, Michel V, Hardelin JP, et al.: Cadherin-23, myosin VIIa and harmonin, encoded by Usher syndrome type I genes, form a ternary complex and interact with membrane phospholipids. Hum Mol Genet 19: 3557-3565, 2010 – reference: 47) Kazmierczak P, Sakaguchi H, Tokita J, et al.: Cadherin 23 and protocadherin 15 interact to form tip-link filaments in sensory hair cells. Nature 449: 87-91, 2007 – reference: 13) 池園哲郎, 福島邦博, 松田 帆 : Ⅲ各論 3. 外リンパ瘻.『急性感音難聴診療の手引き』 日本聴覚医学会編. 72-82頁, 金原出版, 東京, 2018 – reference: 65) Gagnon LH, Longo-Guess CM, Berryman M, et al.: The chloride intracellular channel protein CLIC5 is expressed at high levels in hair cell stereocilia and is essential for normal inner ear function. J Neurosci 26: 10188-10198, 2006 – reference: 18) Weil D, Levy G, Sahly I, et al.: Human myosin VIIA responsible for the Usher 1B syndrome: a predicted membrane-associated motor protein expressed in developing sensory epithelia. Proc Natl Acad Sci U S A 93: 3232-3237, 1996 – reference: 49) Schraders M, Lee K, Oostrik J, et al.: Homozygosity mapping reveals mutations of GRXCR1 as a cause of autosomal-recessive nonsyndromic hearing impairment. Am J Hum Genet 86: 138-147, 2010 – reference: 38) Verpy E, Weil D, Leibovici M, et al.: Stereocilin-deficient mice reveal the origin of cochlear waveform distortions. Nature 456: 255-258, 2008 – reference: 68) de Kok YJ, van der Maarel SM, Bitner-Glindzicz M, et al.: Association between X-linked mixed deafness and mutations in the POU domain gene POU3F4. Science 267: 685-688, 1995 – reference: 26) Zazo Seco C, Serrao de Castro L, van Nierop JW, et al.: Allelic Mutations of KITLG, Encoding KIT Ligand, Cause Asymmetric and Unilateral Hearing Loss and Waardenburg Syndrome Type 2. Am J Hum Genet 97: 647-660, 2015 – reference: 53) Ahmed ZM, Morell RJ, Riazuddin S, et al.: Mutations of MYO6 are associated with recessive deafness, DFNB37. Am J Hum Genet 72: 1315-1322, 2003 – reference: 12) Ikezono T, Omori A, Ichinose S, et al.: Identification of the protein product of the Coch gene (hereditary deafness gene) as the major component of bovine inner ear protein. Biochim Biophys Acta 1535: 258-265, 2001 – reference: 52) Zheng L, Sekerkova G, Vranich K, et al.: The deaf jerker mouse has a mutation in the gene encoding the espin actin-bundling proteins of hair cell stereocilia and lacks espins. Cell 102: 377-385, 2000 – reference: 40) Simmler MC, Cohen-Salmon M, El-Amraoui A, et al.: Targeted disruption of otog results in deafness and severe imbalance, Nat Genet 24: 139-143, 2000 – reference: 45) Ahmed ZM, Riazuddin S, Ahmad J, et al.: PCDH15 is expressed in the neurosensory epithelium of the eye and ear and mutant alleles are responsible for both USH1F and DFNB23. Hum Mol Genet 12: 3215-3223, 2003 – reference: 25) Matsushita T, Hayashi H, Kunishima S, et al.: Targeted disruption of mouse ortholog of the human MYH9 responsible for macrothrombocytopenia with different organ involvement: hematological, nephrological, and otological studies of heterozygous KO mice. Biochem Biophys Res Commun 325: 1163-1171, 2004 – reference: 9) Usami S, Takahashi K, Yuge I, et al.: Mutations in the COCH gene are a frequent cause of autosomal dominant progressive cochleo-vestibular dysfunction, but not of Meniere's disease. Eur J Hum Genet 11: 744-748, 2003 – reference: 56) Avraham KB, Hasson T, Steel KP, et al.: The mouse Snell's waltzer deafness gene encodes an unconventional myosin required for structural integrity of inner ear hair cells. Nat Genet 11: 369-375, 1995 – reference: 42) Verpy E, Leibovici M, Zwaenepoel I, et al.: A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C. Nat Genet 26: 51-55, 2000 – reference: 29) Delpire E, Lu J, England R, et al.: Deafness and imbalance associated with inactivation of the secretory Na-K-2Cl co-transporter. Nat Genet 22: 192-195, 1999 – reference: 71) Roman-Naranjo P, Gallego-Martinez A, Soto-Varela A, et al.: Burden of Rare Variants in the OTOG Gene in Familial Meniere's Disease. Ear Hear 2020 – reference: 28) Mutai H, Wasano K, Momozawa Y, et al.: Variants encoding a restricted carboxy-terminal domain of SLC12A2 cause hereditary hearing loss in humans. PLoS Genet 16: e1008643, 2020 – reference: 46) Alagramam KN, Yuan H, Kuehn MH, et al.: Mutations in the novel protocadherin PCDH15 cause Usher syndrome type 1F. Hum Mol Genet 10: 1709-1718, 2001 – reference: 48) Alagramam KN, Murcia CL, Kwon HY, et al.: The mouse Ames waltzer hearing-loss mutant is caused by mutation of Pcdh15, a novel protocadherin gene. Nat Genet 27: 99-102, 2001 – reference: 31) Usami S, Abe S, Weston MD, et al.: Non-syndromic hearing loss associated with enlarged vestibular aqueduct is caused by PDS mutations. Hum Genet 104: 188-192, 1999 – reference: 19) Gibson F, Walsh J, Mburu P, et al.: A type VII myosin encoded by the mouse deafness gene shaker-1. Nature 374: 62-64, 1995 – reference: 10) Merchant SN, Linthicum FH, Nadol JB Jr: Histopathology of the inner ear in DFNA9. Adv Otorhinolaryngol 56: 212-217, 2000 – reference: 35) Verpy E, Masmoudi S, Zwaenepoel I, et al.: Mutations in a new gene encoding a protein of the hair bundle cause non-syndromic deafness at the DFNB16 locus. Nat Genet 29: 345-349, 2001 – reference: 3) Marres H, van Ewijk M, Huygen P, et al.: Inherited nonsyndromic hearing loss. An audiovestibular study in a large family with autosomal dominant progressive hearing loss related to DFNA2. Arch Otolaryngol Head Neck Surg 123: 573-577, 1997 – reference: 70) Minowa O, Ikeda K, Sugitani Y, et al.: Altered cochlear fibrocytes in a mouse model of DFN3 nonsyndromic deafness. Science 285: 1408-1411, 1999 – reference: 36) Frykholm C, Klar J, Tomanovic T, et al.: Stereocilin gene variants associated with episodic vertigo: expansion of the DFNB16 phenotype. Eur J Hum Genet 26: 1871-1874, 2018 – reference: 50) Odeh H, Hunker KL, Belyantseva IA, et al.: Mutations in Grxcr1 are the basis for inner ear dysfunction in the pirouette mouse. Am J Hum Genet 86: 148-160, 2010 – reference: 55) Heidrych P, Zimmermann U, Kuhn S, et al.: Otoferlin interacts with myosin VI: implications for maintenance of the basolateral synaptic structure of the inner hair cell. Hum Mol Genet 18: 2779-2790, 2009 – reference: 44) Johnson KR, Gagnon LH, Webb LS, et al.: Mouse models of USH1C and DFNB18: phenotypic and molecular analyses of two new spontaneous mutations of the Ush1c gene. Hum Mol Genet 12: 3075-3086, 2003 – reference: 51) Naz S, Griffith AJ, Riazuddin S, et al.: Mutations of ESPN cause autosomal recessive deafness and vestibular dysfunction. J Med Genet 41: 591-595, 2004 – reference: 23) Saez CG, Myers JC, Shows TB, et al.: Human nonmuscle myosin heavy chain mRNA: generation of diversity through alternative polyadenylylation. Proc Natl Acad Sci U S A 87: 1164-1168, 1990 |
SSID | ssib043658101 ssib002670962 ssib038076172 ssib058492684 ssib000950432 ssib003171114 ssib012421183 ssj0062567 ssib002670996 ssib002484710 |
Score | 2.264681 |
Snippet | 「緒言」近年数多く報告されている遺伝性難聴家系のなかには, 前庭症状をきたす家系もある. これらの家系において, 前庭症状の原因と考えられる遺伝子が同定されれば, 次にはその遺伝子・蛋白質の機能を研究することが可能になる. そしてこれらの試みはめまいの病態を分子レベルで解明し,... |
SourceID | medicalonline jstage |
SourceType | Publisher |
StartPage | 63 |
Title | 非症候群性遺伝性難聴に報告された, 前庭症状と原因遺伝子のデータベース・文献的検討 |
URI | https://www.jstage.jst.go.jp/article/jser/80/2/80_63/_article/-char/ja http://mol.medicalonline.jp/en/journal/download?GoodsID=ee6mehei/2021/008002/002&name=0063-0074j |
Volume | 80 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | Equilibrium Research, 2021/04/30, Vol.80(2), pp.63-74 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEA-lvggiahW_uQfXF72a7-y-maQpRVEQWuhbuOT20IO2fvQQfer1hGKpRR9Uav0oWLAgLQgiWIv-MfF67X_hzCS5psWHKtyFuc3O7OxvkuzMZXdWUS5Els6rsmaVVSeWZTPmUZnHNVGO4cnHq4aUgmYT3rhpD42Y10at0Z7e04VZS43JqD9-_Nd1Jf9jVSgDu-Iq2X-wbFcoFAAN9oUjWBiO-7IxCwQTA0wELHCYcBgE9oFFcxcElngBc00W2FjiOliZa8xzWWAyz0fG4inhMddgAac6wGUg4Xoo0FWZpyEhNMbd7JSwiNAZ9_OSQbQXaQAtDSABjbkDBeUc5PfsXDqnygFyonQPW_qLlhYKEWrOFRBhkEAiPD9TxRvMSrD_e051SzzstrBzfXwSCBq6jBNYAJnwEQhQjwe73lzca9yhJRKNse6MxfyCRU4ACTtgIb_QczAEtKlTt4xcHtXvwgRtQ1fVvD5o6nEyhAcSi__K6FrhBRPeR4QRRxtiddDYR2nQAbB8BqhBihlkLhNh9dxLBADUs4jwiS01pZZh7AUZgZCkKtG14Wr4QdV9ApIs49q5rdzCsGJwq2w5WpaAPB32MM6yHGe0OC6mO2xl979eGOSyESl1l9I9lvYOxIZDu0fX4Wbr52p_zrErsXl224RYKeRqqOPBNsK8HJcdhnWIfQ7ojkNTMK7fKoQOAnPvFWYEmOhnFVxZTExYSIVJvwupJcFvhmG-OxZpODVC23G1cR8GdO7z36YBrrqmdsdC8NsFJkrKvT4bQgdKzZCjm6ZCRhyu7KAAbm4dgj7M5nFoLH0RmybEKfi0w0eUw1kwWnJTKI4qPfXKMaXPHa9MTow9Kl0s0fRweu_Wpzzcfve-83qmPbXQ-bm8OfVpu7n-e-MdEosft5pfk-bn9tKX9ovZpPkymZ5Lmh8ul9pPn7XXV4GpM_staa605z-0F5dSvvbq86S5lrRmktZGMv0raS0Q8T1p_dh8NdOZW-u8ebK5_HZrZf64MjIYDPtD5WzXlnLdUIVaNk1uSDOKTceG6K1iVp1qzcIUWgCoNCDeiC1ZwW3unSrENhEEpGYsRRThkvbIrkbGCaV3fGJcnlRKWmTZFaHXatwyTVWrcM6FVXWkWquKWBrylGKncIZ309Q84T6vqVPK1V3wh9lD_UEopT0mb8s7Id7UYRpPh-kXxFDA5Qhc0H_6f9s-oxzceWCcVXon7zfkOQhsJqPzdIX_ASkpHbg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%9D%9E%E7%97%87%E5%80%99%E7%BE%A4%E6%80%A7%E9%81%BA%E4%BC%9D%E6%80%A7%E9%9B%A3%E8%81%B4%E3%81%AB%E5%A0%B1%E5%91%8A%E3%81%95%E3%82%8C%E3%81%9F%2C+%E5%89%8D%E5%BA%AD%E7%97%87%E7%8A%B6%E3%81%A8%E5%8E%9F%E5%9B%A0%E9%81%BA%E4%BC%9D%E5%AD%90%E3%81%AE%E3%83%87%E3%83%BC%E3%82%BF%E3%83%99%E3%83%BC%E3%82%B9%E3%83%BB%E6%96%87%E7%8C%AE%E7%9A%84%E6%A4%9C%E8%A8%8E&rft.jtitle=Equilibrium+Research&rft.au=%E6%B1%A0%E5%9C%92%2C+%E5%93%B2%E9%83%8E&rft.au=%E5%89%8D%E7%94%B0%2C+%E5%B9%B8%E8%8B%B1&rft.date=2021-04-30&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E3%82%81%E3%81%BE%E3%81%84%E5%B9%B3%E8%A1%A1%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=0385-5716&rft.eissn=1882-577X&rft.volume=80&rft.issue=2&rft.spage=63&rft.epage=74&rft_id=info:doi/10.3757%2Fjser.80.63&rft.externalDocID=article_jser_80_2_80_63_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0385-5716&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0385-5716&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0385-5716&client=summon |