Physical interaction of junctophilin and the CaV1.1 C terminus is crucial for skeletal muscle contraction

Close physical association of CaV1.1 L-type calcium channels (LTCCs) at the sarcolemmal junctional membrane (JM) with ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) is crucial for excitation–contraction coupling (ECC) in skeletal muscle. However, the molecular mechanism underlying the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 115; no. 17; pp. 4507 - 4512
Main Authors Nakada, Tsutomu, Kashihara, Toshihide, Komatsu, Masatoshi, Kojima, Katsuhiko, Takeshita, Toshikazu, Yamada, Mitsuhiko
Format Journal Article
LanguageEnglish
Published National Academy of Sciences 24.04.2018
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Close physical association of CaV1.1 L-type calcium channels (LTCCs) at the sarcolemmal junctional membrane (JM) with ryanodine receptors (RyRs) of the sarcoplasmic reticulum (SR) is crucial for excitation–contraction coupling (ECC) in skeletal muscle. However, the molecular mechanism underlying the JM targeting of LTCCs is unexplored. Junctophilin 1 (JP1) and JP2 stabilize the JM by bridging the sarcolemmal and SR membranes. Here, we examined the roles of JPs in localization and function of LTCCs. Knockdown of JP1 or JP2 in cultured myotubes inhibited LTCC clustering at the JM and suppressed evoked Ca2+ transients without disrupting JM structure. Coimmunoprecipitation and GST pull-down assays demonstrated that JPs physically interacted with 12-aa residues in the proximal C terminus of the CaV1.1. A JP1 mutant lacking the C terminus including the transmembrane domain (JP1ΔCT) interacted with the sarcolemmal/T-tubule membrane but not the SR membrane. Expression of this mutant in adult mouse muscles in vivo exerted a dominant-negative effect on endogenous JPs, impairing LTCC–RyR coupling at triads without disrupting JM morphology, and substantially reducing Ca2+ transients without affecting SR Ca2+ content. Moreover, the contractile force of the JP1ΔCT-expressedmuscle was dramatically reduced compared with the control. Taken together, JPs recruit LTCCs to the JM through physical interaction and ensure robust ECC at triads in skeletal muscle.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
Edited by Kurt G. Beam, University of Colorado Denver, Aurora, CO, and approved March 15, 2018 (received for review September 22, 2017)
Author contributions: T.N., T.T., and M.Y. designed research; T.N., T.K., M.K., and K.K. performed research; T.N., T.K., M.K., K.K., and M.Y. analyzed data; and T.N. and M.Y. wrote the paper.
ISSN:0027-8424
1091-6490
DOI:10.1073/pnas.1716649115