Two Sub-swarms Particle Swarm Optimization Algorithm

This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are divided into two sub-swarms. The two sub-swarms have different move directions. One sub-swarm moves toward the global best position. Another mov...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Natural Computation pp. 515 - 524
Main Authors Chen, Guochu, Yu, Jinshou
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text
ISBN9783540283201
354028320X
3540283234
9783540283232
ISSN0302-9743
1611-3349
DOI10.1007/11539902_63

Cover

Loading…
Abstract This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are divided into two sub-swarms. The two sub-swarms have different move directions. One sub-swarm moves toward the global best position. Another moves in the opposite direction. Not only its own move experience and the best individual’s position of its own sub-swarm, but also the global best position of the whole swarm can affect each particle’s move in every iteration. If the fitness of the global best position can’t be improved for fifteen successive steps, the particles of the two sub-swarms are exchanged. At the same time, the worst individual of one sub-swarm is replaced with the best individual of another. Then, both TSPSO and PSO are used to resolve ten well-known and widely used test functions’ optimization problems. Results show that TSPSO has greater optimization efficiency, better optimization performance and more advantages in many aspects than PSO.
AbstractList This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are divided into two sub-swarms. The two sub-swarms have different move directions. One sub-swarm moves toward the global best position. Another moves in the opposite direction. Not only its own move experience and the best individual’s position of its own sub-swarm, but also the global best position of the whole swarm can affect each particle’s move in every iteration. If the fitness of the global best position can’t be improved for fifteen successive steps, the particles of the two sub-swarms are exchanged. At the same time, the worst individual of one sub-swarm is replaced with the best individual of another. Then, both TSPSO and PSO are used to resolve ten well-known and widely used test functions’ optimization problems. Results show that TSPSO has greater optimization efficiency, better optimization performance and more advantages in many aspects than PSO.
Author Chen, Guochu
Yu, Jinshou
Author_xml – sequence: 1
  givenname: Guochu
  surname: Chen
  fullname: Chen, Guochu
  email: chgcsh@sohu.com
  organization: Research Institute of Automation, East China University of Science and Technology, Shanghai, China
– sequence: 2
  givenname: Jinshou
  surname: Yu
  fullname: Yu, Jinshou
  organization: Research Institute of Automation, East China University of Science and Technology, Shanghai, China
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135523$$DView record in Pascal Francis
BookMark eNpNkEtPwzAQhA0Uibb0xB_IhQOHgNfrR3ysKl5SpSK1nC07iYtLHlUcVMGvJ1U5sIdZjb7ZPcyEjJq2KQm5AXoPlKoHAIFaU2YknpEJCk4RMolwTsYgAVJEri_ITKvsyFiGjMKIjClSlmrF8YrMYtzRYRAkZXJM-ObQJusvl8aD7eqYvNmuD3lVJuujT1b7PtThx_ahbZJ5tW270H_U1-TS2yqWs789Je9Pj5vFS7pcPb8u5st0xzLRp1YXqIVyDiWlHqCgErVUkDmEouDacgcu09wzJwZ1wxHPhRel93npFcMpuT393duY28p3tslDNPsu1Lb7NqAAhWA45O5OuTigZlt2xrXtZzRAzbE28682_AWjOVqB
ContentType Book Chapter
Conference Proceeding
Copyright Springer-Verlag Berlin Heidelberg 2005
2005 INIST-CNRS
Copyright_xml – notice: Springer-Verlag Berlin Heidelberg 2005
– notice: 2005 INIST-CNRS
DBID IQODW
DOI 10.1007/11539902_63
DatabaseName Pascal-Francis
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISBN 3540318631
9783540318637
EISSN 1611-3349
Editor Wang, Lipo
Ong, Yew Soon
Chen, Ke
Editor_xml – sequence: 1
  givenname: Lipo
  surname: Wang
  fullname: Wang, Lipo
  email: elpwang@ntu.edu.sg
– sequence: 2
  givenname: Ke
  surname: Chen
  fullname: Chen, Ke
  email: chenk@cs.zju.edu.cn
– sequence: 3
  givenname: Yew Soon
  surname: Ong
  fullname: Ong, Yew Soon
  email: asysong@ntu.edu.sg
EndPage 524
ExternalDocumentID 17135523
GroupedDBID -DT
-GH
-~X
1SB
29L
2HA
2HV
5QI
875
AASHB
ABMNI
ACGFS
ADCXD
AEFIE
ALMA_UNASSIGNED_HOLDINGS
EJD
F5P
FEDTE
HVGLF
LAS
LDH
P2P
RIG
RNI
RSU
SVGTG
VI1
~02
IQODW
ID FETCH-LOGICAL-j285t-a9d3957bb3600f11d06396718b31dd49a4b1b894f2b594fb2854c5f5effcef723
ISBN 9783540283201
354028320X
3540283234
9783540283232
ISSN 0302-9743
IngestDate Wed Apr 02 07:27:11 EDT 2025
Tue Jul 29 20:02:11 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Swarm intelligence
Neural network
Modeling
Evolutionary algorithm
Mathematical programming
Language English
License CC BY 4.0
LinkModel OpenURL
MeetingName Advances in natural computation (Changsha, 27-29 August 2005)
MergedId FETCHMERGED-LOGICAL-j285t-a9d3957bb3600f11d06396718b31dd49a4b1b894f2b594fb2854c5f5effcef723
PageCount 10
ParticipantIDs pascalfrancis_primary_17135523
springer_books_10_1007_11539902_63
PublicationCentury 2000
PublicationDate 2005
PublicationDateYYYYMMDD 2005-01-01
PublicationDate_xml – year: 2005
  text: 2005
PublicationDecade 2000
PublicationPlace Berlin, Heidelberg
PublicationPlace_xml – name: Berlin, Heidelberg
– name: Berlin
PublicationSeriesTitle Lecture Notes in Computer Science
PublicationSubtitle First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part III
PublicationTitle Advances in Natural Computation
PublicationYear 2005
Publisher Springer Berlin Heidelberg
Springer
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer
RelatedPersons Kleinberg, Jon M.
Mattern, Friedemann
Nierstrasz, Oscar
Tygar, Dough
Steffen, Bernhard
Kittler, Josef
Vardi, Moshe Y.
Weikum, Gerhard
Sudan, Madhu
Naor, Moni
Mitchell, John C.
Terzopoulos, Demetri
Pandu Rangan, C.
Kanade, Takeo
Hutchison, David
RelatedPersons_xml – sequence: 1
  givenname: David
  surname: Hutchison
  fullname: Hutchison, David
  organization: Lancaster University, UK
– sequence: 2
  givenname: Takeo
  surname: Kanade
  fullname: Kanade, Takeo
  organization: Carnegie Mellon University, Pittsburgh, USA
– sequence: 3
  givenname: Josef
  surname: Kittler
  fullname: Kittler, Josef
  organization: University of Surrey, Guildford, UK
– sequence: 4
  givenname: Jon M.
  surname: Kleinberg
  fullname: Kleinberg, Jon M.
  organization: Cornell University, Ithaca, USA
– sequence: 5
  givenname: Friedemann
  surname: Mattern
  fullname: Mattern, Friedemann
  organization: ETH Zurich, Switzerland
– sequence: 6
  givenname: John C.
  surname: Mitchell
  fullname: Mitchell, John C.
  organization: Stanford University, CA, USA
– sequence: 7
  givenname: Moni
  surname: Naor
  fullname: Naor, Moni
  organization: Weizmann Institute of Science, Rehovot, Israel
– sequence: 8
  givenname: Oscar
  surname: Nierstrasz
  fullname: Nierstrasz, Oscar
  organization: University of Bern, Switzerland
– sequence: 9
  givenname: C.
  surname: Pandu Rangan
  fullname: Pandu Rangan, C.
  organization: Indian Institute of Technology, Madras, India
– sequence: 10
  givenname: Bernhard
  surname: Steffen
  fullname: Steffen, Bernhard
  organization: University of Dortmund, Germany
– sequence: 11
  givenname: Madhu
  surname: Sudan
  fullname: Sudan, Madhu
  organization: Massachusetts Institute of Technology, MA, USA
– sequence: 12
  givenname: Demetri
  surname: Terzopoulos
  fullname: Terzopoulos, Demetri
  organization: New York University, NY, USA
– sequence: 13
  givenname: Dough
  surname: Tygar
  fullname: Tygar, Dough
  organization: University of California, Berkeley, USA
– sequence: 14
  givenname: Moshe Y.
  surname: Vardi
  fullname: Vardi, Moshe Y.
  organization: Rice University, Houston, USA
– sequence: 15
  givenname: Gerhard
  surname: Weikum
  fullname: Weikum, Gerhard
  organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany
SSID ssj0000316026
ssj0002792
ssj0000316024
Score 1.8097692
Snippet This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are...
SourceID pascalfrancis
springer
SourceType Index Database
Publisher
StartPage 515
SubjectTerms Applied sciences
Artificial intelligence
Computer science; control theory; systems
Exact sciences and technology
Title Two Sub-swarms Particle Swarm Optimization Algorithm
URI http://link.springer.com/10.1007/11539902_63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9pAEF0Veql6aPql0iTIqnpDrrC9i-1DDxEiRYjSQ0mVm7Vre0uigCNsK1J-fWc8a4NDFLW9rMDiY5m3O37M7Jth7HMMHlD6yre1FtrmYeDZgUi1rThwfT_lfuiiwPn7YjS94LNLcVm3hDfqkkJ9ie8f1ZX8D6pwDXBFlew_INt8KFyAx4AvjIAwjA_IbzvMSseLKXtfnWddSCqfQT0aWsn1sZFffCuzeFU2m7ys4Lva5KusbC2buwydiZ3fye06B4JJK2vwE58PfoCDWRvl5uDs5ne2vSpWNCn8wWn-dW5yEousoKnVbSNqL9IKM4gHYYY6zDh4ogqXiSJh8yPzTiPMAqcLf1vIj6XkZ0dYPdGjaqXGdwrSdZrbsCBp9YGHp0MdwGOBWQ3daOR1WMcPRJc9P5vM5r-a-Bo4K-yu1dyVsVAiZZRoMkbnU03WVGLaTd4IOVFjufdNeG5W5rB1NPU8OUieV5xkecReok7FQgEJmPc1e5Zu3rBXtbktY-63jAOk1g5Sq4bUqiC19iG1GkjfsYvzyXI8tU2vDPvaDURhyzDBjKtSHjBY7TgJUs8REA_lOUnCQ8mVo4KQa1cJGBUKZ2OhYVvqONW-671n3U22ST8wK0mGSrpShipQXPpCamDFUgUOqpZ5Inus3zJDdEt1USIH2z0K1-uxT7VdItweeVTXxt4z5se_edExe7FbiyesW2zL9BRIYKH6Bu8_LCBVxA
linkProvider Library Specific Holdings
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Natural+Computation&rft.au=Chen%2C+Guochu&rft.au=Yu%2C+Jinshou&rft.atitle=Two+Sub-swarms+Particle+Swarm+Optimization+Algorithm&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540283201&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=515&rft.epage=524&rft_id=info:doi/10.1007%2F11539902_63
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon