Two Sub-swarms Particle Swarm Optimization Algorithm
This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are divided into two sub-swarms. The two sub-swarms have different move directions. One sub-swarm moves toward the global best position. Another mov...
Saved in:
Published in | Advances in Natural Computation pp. 515 - 524 |
---|---|
Main Authors | , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
ISBN | 9783540283201 354028320X 3540283234 9783540283232 |
ISSN | 0302-9743 1611-3349 |
DOI | 10.1007/11539902_63 |
Cover
Loading…
Abstract | This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are divided into two sub-swarms. The two sub-swarms have different move directions. One sub-swarm moves toward the global best position. Another moves in the opposite direction. Not only its own move experience and the best individual’s position of its own sub-swarm, but also the global best position of the whole swarm can affect each particle’s move in every iteration. If the fitness of the global best position can’t be improved for fifteen successive steps, the particles of the two sub-swarms are exchanged. At the same time, the worst individual of one sub-swarm is replaced with the best individual of another. Then, both TSPSO and PSO are used to resolve ten well-known and widely used test functions’ optimization problems. Results show that TSPSO has greater optimization efficiency, better optimization performance and more advantages in many aspects than PSO. |
---|---|
AbstractList | This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are divided into two sub-swarms. The two sub-swarms have different move directions. One sub-swarm moves toward the global best position. Another moves in the opposite direction. Not only its own move experience and the best individual’s position of its own sub-swarm, but also the global best position of the whole swarm can affect each particle’s move in every iteration. If the fitness of the global best position can’t be improved for fifteen successive steps, the particles of the two sub-swarms are exchanged. At the same time, the worst individual of one sub-swarm is replaced with the best individual of another. Then, both TSPSO and PSO are used to resolve ten well-known and widely used test functions’ optimization problems. Results show that TSPSO has greater optimization efficiency, better optimization performance and more advantages in many aspects than PSO. |
Author | Chen, Guochu Yu, Jinshou |
Author_xml | – sequence: 1 givenname: Guochu surname: Chen fullname: Chen, Guochu email: chgcsh@sohu.com organization: Research Institute of Automation, East China University of Science and Technology, Shanghai, China – sequence: 2 givenname: Jinshou surname: Yu fullname: Yu, Jinshou organization: Research Institute of Automation, East China University of Science and Technology, Shanghai, China |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=17135523$$DView record in Pascal Francis |
BookMark | eNpNkEtPwzAQhA0Uibb0xB_IhQOHgNfrR3ysKl5SpSK1nC07iYtLHlUcVMGvJ1U5sIdZjb7ZPcyEjJq2KQm5AXoPlKoHAIFaU2YknpEJCk4RMolwTsYgAVJEri_ITKvsyFiGjMKIjClSlmrF8YrMYtzRYRAkZXJM-ObQJusvl8aD7eqYvNmuD3lVJuujT1b7PtThx_ahbZJ5tW270H_U1-TS2yqWs789Je9Pj5vFS7pcPb8u5st0xzLRp1YXqIVyDiWlHqCgErVUkDmEouDacgcu09wzJwZ1wxHPhRel93npFcMpuT393duY28p3tslDNPsu1Lb7NqAAhWA45O5OuTigZlt2xrXtZzRAzbE28682_AWjOVqB |
ContentType | Book Chapter Conference Proceeding |
Copyright | Springer-Verlag Berlin Heidelberg 2005 2005 INIST-CNRS |
Copyright_xml | – notice: Springer-Verlag Berlin Heidelberg 2005 – notice: 2005 INIST-CNRS |
DBID | IQODW |
DOI | 10.1007/11539902_63 |
DatabaseName | Pascal-Francis |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science Applied Sciences |
EISBN | 3540318631 9783540318637 |
EISSN | 1611-3349 |
Editor | Wang, Lipo Ong, Yew Soon Chen, Ke |
Editor_xml | – sequence: 1 givenname: Lipo surname: Wang fullname: Wang, Lipo email: elpwang@ntu.edu.sg – sequence: 2 givenname: Ke surname: Chen fullname: Chen, Ke email: chenk@cs.zju.edu.cn – sequence: 3 givenname: Yew Soon surname: Ong fullname: Ong, Yew Soon email: asysong@ntu.edu.sg |
EndPage | 524 |
ExternalDocumentID | 17135523 |
GroupedDBID | -DT -GH -~X 1SB 29L 2HA 2HV 5QI 875 AASHB ABMNI ACGFS ADCXD AEFIE ALMA_UNASSIGNED_HOLDINGS EJD F5P FEDTE HVGLF LAS LDH P2P RIG RNI RSU SVGTG VI1 ~02 IQODW |
ID | FETCH-LOGICAL-j285t-a9d3957bb3600f11d06396718b31dd49a4b1b894f2b594fb2854c5f5effcef723 |
ISBN | 9783540283201 354028320X 3540283234 9783540283232 |
ISSN | 0302-9743 |
IngestDate | Wed Apr 02 07:27:11 EDT 2025 Tue Jul 29 20:02:11 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Swarm intelligence Neural network Modeling Evolutionary algorithm Mathematical programming |
Language | English |
License | CC BY 4.0 |
LinkModel | OpenURL |
MeetingName | Advances in natural computation (Changsha, 27-29 August 2005) |
MergedId | FETCHMERGED-LOGICAL-j285t-a9d3957bb3600f11d06396718b31dd49a4b1b894f2b594fb2854c5f5effcef723 |
PageCount | 10 |
ParticipantIDs | pascalfrancis_primary_17135523 springer_books_10_1007_11539902_63 |
PublicationCentury | 2000 |
PublicationDate | 2005 |
PublicationDateYYYYMMDD | 2005-01-01 |
PublicationDate_xml | – year: 2005 text: 2005 |
PublicationDecade | 2000 |
PublicationPlace | Berlin, Heidelberg |
PublicationPlace_xml | – name: Berlin, Heidelberg – name: Berlin |
PublicationSeriesTitle | Lecture Notes in Computer Science |
PublicationSubtitle | First International Conference, ICNC 2005, Changsha, China, August 27-29, 2005, Proceedings, Part III |
PublicationTitle | Advances in Natural Computation |
PublicationYear | 2005 |
Publisher | Springer Berlin Heidelberg Springer |
Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer |
RelatedPersons | Kleinberg, Jon M. Mattern, Friedemann Nierstrasz, Oscar Tygar, Dough Steffen, Bernhard Kittler, Josef Vardi, Moshe Y. Weikum, Gerhard Sudan, Madhu Naor, Moni Mitchell, John C. Terzopoulos, Demetri Pandu Rangan, C. Kanade, Takeo Hutchison, David |
RelatedPersons_xml | – sequence: 1 givenname: David surname: Hutchison fullname: Hutchison, David organization: Lancaster University, UK – sequence: 2 givenname: Takeo surname: Kanade fullname: Kanade, Takeo organization: Carnegie Mellon University, Pittsburgh, USA – sequence: 3 givenname: Josef surname: Kittler fullname: Kittler, Josef organization: University of Surrey, Guildford, UK – sequence: 4 givenname: Jon M. surname: Kleinberg fullname: Kleinberg, Jon M. organization: Cornell University, Ithaca, USA – sequence: 5 givenname: Friedemann surname: Mattern fullname: Mattern, Friedemann organization: ETH Zurich, Switzerland – sequence: 6 givenname: John C. surname: Mitchell fullname: Mitchell, John C. organization: Stanford University, CA, USA – sequence: 7 givenname: Moni surname: Naor fullname: Naor, Moni organization: Weizmann Institute of Science, Rehovot, Israel – sequence: 8 givenname: Oscar surname: Nierstrasz fullname: Nierstrasz, Oscar organization: University of Bern, Switzerland – sequence: 9 givenname: C. surname: Pandu Rangan fullname: Pandu Rangan, C. organization: Indian Institute of Technology, Madras, India – sequence: 10 givenname: Bernhard surname: Steffen fullname: Steffen, Bernhard organization: University of Dortmund, Germany – sequence: 11 givenname: Madhu surname: Sudan fullname: Sudan, Madhu organization: Massachusetts Institute of Technology, MA, USA – sequence: 12 givenname: Demetri surname: Terzopoulos fullname: Terzopoulos, Demetri organization: New York University, NY, USA – sequence: 13 givenname: Dough surname: Tygar fullname: Tygar, Dough organization: University of California, Berkeley, USA – sequence: 14 givenname: Moshe Y. surname: Vardi fullname: Vardi, Moshe Y. organization: Rice University, Houston, USA – sequence: 15 givenname: Gerhard surname: Weikum fullname: Weikum, Gerhard organization: Max-Planck Institute of Computer Science, Saarbruecken, Germany |
SSID | ssj0000316026 ssj0002792 ssj0000316024 |
Score | 1.8097692 |
Snippet | This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are... |
SourceID | pascalfrancis springer |
SourceType | Index Database Publisher |
StartPage | 515 |
SubjectTerms | Applied sciences Artificial intelligence Computer science; control theory; systems Exact sciences and technology |
Title | Two Sub-swarms Particle Swarm Optimization Algorithm |
URI | http://link.springer.com/10.1007/11539902_63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9pAEF0Veql6aPql0iTIqnpDrrC9i-1DDxEiRYjSQ0mVm7Vre0uigCNsK1J-fWc8a4NDFLW9rMDiY5m3O37M7Jth7HMMHlD6yre1FtrmYeDZgUi1rThwfT_lfuiiwPn7YjS94LNLcVm3hDfqkkJ9ie8f1ZX8D6pwDXBFlew_INt8KFyAx4AvjIAwjA_IbzvMSseLKXtfnWddSCqfQT0aWsn1sZFffCuzeFU2m7ys4Lva5KusbC2buwydiZ3fye06B4JJK2vwE58PfoCDWRvl5uDs5ne2vSpWNCn8wWn-dW5yEousoKnVbSNqL9IKM4gHYYY6zDh4ogqXiSJh8yPzTiPMAqcLf1vIj6XkZ0dYPdGjaqXGdwrSdZrbsCBp9YGHp0MdwGOBWQ3daOR1WMcPRJc9P5vM5r-a-Bo4K-yu1dyVsVAiZZRoMkbnU03WVGLaTd4IOVFjufdNeG5W5rB1NPU8OUieV5xkecReok7FQgEJmPc1e5Zu3rBXtbktY-63jAOk1g5Sq4bUqiC19iG1GkjfsYvzyXI8tU2vDPvaDURhyzDBjKtSHjBY7TgJUs8REA_lOUnCQ8mVo4KQa1cJGBUKZ2OhYVvqONW-671n3U22ST8wK0mGSrpShipQXPpCamDFUgUOqpZ5Inus3zJDdEt1USIH2z0K1-uxT7VdItweeVTXxt4z5se_edExe7FbiyesW2zL9BRIYKH6Bu8_LCBVxA |
linkProvider | Library Specific Holdings |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Abook&rft.genre=bookitem&rft.title=Advances+in+Natural+Computation&rft.au=Chen%2C+Guochu&rft.au=Yu%2C+Jinshou&rft.atitle=Two+Sub-swarms+Particle+Swarm+Optimization+Algorithm&rft.series=Lecture+Notes+in+Computer+Science&rft.date=2005-01-01&rft.pub=Springer+Berlin+Heidelberg&rft.isbn=9783540283201&rft.issn=0302-9743&rft.eissn=1611-3349&rft.spage=515&rft.epage=524&rft_id=info:doi/10.1007%2F11539902_63 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0302-9743&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0302-9743&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0302-9743&client=summon |