Two Sub-swarms Particle Swarm Optimization Algorithm

This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are divided into two sub-swarms. The two sub-swarms have different move directions. One sub-swarm moves toward the global best position. Another mov...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Natural Computation pp. 515 - 524
Main Authors Chen, Guochu, Yu, Jinshou
Format Book Chapter Conference Proceeding
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg 2005
Springer
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:This paper proposes a two sub-warms particle swarm optimization algorithm (TSPSO) and its iteration equations. The new algorithm assumes that particles are divided into two sub-swarms. The two sub-swarms have different move directions. One sub-swarm moves toward the global best position. Another moves in the opposite direction. Not only its own move experience and the best individual’s position of its own sub-swarm, but also the global best position of the whole swarm can affect each particle’s move in every iteration. If the fitness of the global best position can’t be improved for fifteen successive steps, the particles of the two sub-swarms are exchanged. At the same time, the worst individual of one sub-swarm is replaced with the best individual of another. Then, both TSPSO and PSO are used to resolve ten well-known and widely used test functions’ optimization problems. Results show that TSPSO has greater optimization efficiency, better optimization performance and more advantages in many aspects than PSO.
ISBN:9783540283201
354028320X
3540283234
9783540283232
ISSN:0302-9743
1611-3349
DOI:10.1007/11539902_63