Genetic Algorithm for Multi-objective Optimization Using GDEA
Recently, many genetic algorithms (GAs) have been developed as an approximate method to generate Pareto frontier (the set of Pareto optimal solutions) to multi-objective optimization problem. In multi-objective GAs, there are two important problems : how to assign a fitness for each individual, and...
Saved in:
Published in | Advances in Natural Computation pp. 409 - 416 |
---|---|
Main Authors | , , |
Format | Book Chapter Conference Proceeding |
Language | English |
Published |
Berlin, Heidelberg
Springer Berlin Heidelberg
2005
Springer |
Series | Lecture Notes in Computer Science |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Recently, many genetic algorithms (GAs) have been developed as an approximate method to generate Pareto frontier (the set of Pareto optimal solutions) to multi-objective optimization problem. In multi-objective GAs, there are two important problems : how to assign a fitness for each individual, and how to make the diversified individuals. In order to overcome those problems, this paper suggests a new multi-objective GA using generalized data envelopment analysis (GDEA). Through numerical examples, the paper shows that the proposed method using GDEA can generate well-distributed as well as well-approximated Pareto frontiers with less number of function evaluations. |
---|---|
ISBN: | 9783540283201 354028320X 3540283234 9783540283232 |
ISSN: | 0302-9743 1611-3349 |
DOI: | 10.1007/11539902_49 |