8.細菌構成分子と自己免疫性膵炎
自己免疫性膵炎(autoimmune pancreatitis:AIP)type 1の病態に自然免疫と獲得免疫の両者が関与する知見が積み重ねられている.AIPは免疫系感受性遺伝子を背景として何らかの環境因子の関与により発症すると考えられているが,成因の詳細は不明である.環境因子に着目すると,微生物,特に常在細菌が慢性持続的な免疫刺激を担うことによってAIPの成因に関係する可能性が示唆された.そのメカニズムとしては,細菌のパターン認識受容体による自然免疫の活性化,細菌が誘導する炎症性サイトカインによる自己応答性T細胞の活性化,細菌による組織傷害に伴う自己抗原の放出および自己抗原と細菌構成分子との...
Saved in:
Published in | 膵臓 Vol. 33; no. 4; pp. 758 - 767 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
日本膵臓学会
25.08.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0913-0071 1881-2805 |
DOI | 10.2958/suizo.33.758 |
Cover
Abstract | 自己免疫性膵炎(autoimmune pancreatitis:AIP)type 1の病態に自然免疫と獲得免疫の両者が関与する知見が積み重ねられている.AIPは免疫系感受性遺伝子を背景として何らかの環境因子の関与により発症すると考えられているが,成因の詳細は不明である.環境因子に着目すると,微生物,特に常在細菌が慢性持続的な免疫刺激を担うことによってAIPの成因に関係する可能性が示唆された.そのメカニズムとしては,細菌のパターン認識受容体による自然免疫の活性化,細菌が誘導する炎症性サイトカインによる自己応答性T細胞の活性化,細菌による組織傷害に伴う自己抗原の放出および自己抗原と細菌構成分子との分子擬態などが想定されている.AIPの病態と細菌構成分子の関連性については今後のさらなる研究が必要であるが,細菌学的なAIP診断法あるいは治療法の可能性が期待される. |
---|---|
AbstractList | 「要旨」:自己免疫性膵炎(autoimmune pancreatitis : AIP)type 1の病態に自然免疫と獲得免疫の両者が関与する知見が積み重ねられている. AIPは免疫系感受性遺伝子を背景として何らかの環境因子の関与により発症すると考えられているが, 成因の詳細は不明である. 環境因子に着目すると, 微生物, 特に常在細菌が慢性持続的な免疫刺激を担うことによってAIPの成因に関係する可能性が示唆された. そのメカニズムとしては, 細菌のパターン認識受容体による自然免疫の活性化, 細菌が誘導する炎症性サイトカインによる自己応答性T細胞の活性化, 細菌による組織傷害に伴う自己抗原の放出および自己抗原と細菌構成分子との分子擬態などが想定されている. AIPの病態と細菌構成分子の関連性については今後のさらなる研究が必要であるが, 細菌学的なAIP診断法あるいは治療法の可能性が期待される. 自己免疫性膵炎(autoimmune pancreatitis:AIP)type 1の病態に自然免疫と獲得免疫の両者が関与する知見が積み重ねられている.AIPは免疫系感受性遺伝子を背景として何らかの環境因子の関与により発症すると考えられているが,成因の詳細は不明である.環境因子に着目すると,微生物,特に常在細菌が慢性持続的な免疫刺激を担うことによってAIPの成因に関係する可能性が示唆された.そのメカニズムとしては,細菌のパターン認識受容体による自然免疫の活性化,細菌が誘導する炎症性サイトカインによる自己応答性T細胞の活性化,細菌による組織傷害に伴う自己抗原の放出および自己抗原と細菌構成分子との分子擬態などが想定されている.AIPの病態と細菌構成分子の関連性については今後のさらなる研究が必要であるが,細菌学的なAIP診断法あるいは治療法の可能性が期待される. |
Author | 八木, 淳二 清水, 京子 春田, 郁子 阿部, 義廣 樋口, 智昭 徳重, 克年 柳澤, 直子 |
Author_xml | – sequence: 1 fullname: 柳澤, 直子 organization: 東京女子医科大学微生物学免疫学 – sequence: 1 fullname: 八木, 淳二 organization: 東京女子医科大学微生物学免疫学 – sequence: 1 fullname: 徳重, 克年 organization: 東京女子医科大学消化器内科 – sequence: 1 fullname: 阿部, 義廣 organization: 東京女子医科大学微生物学免疫学 – sequence: 1 fullname: 樋口, 智昭 organization: 東京女子医科大学微生物学免疫学 – sequence: 1 fullname: 春田, 郁子 organization: 東京女子医科大学消化器内科 – sequence: 1 fullname: 清水, 京子 organization: 東京女子医科大学消化器内科 |
BookMark | eNo1kM1Kw0AUhQepYFvd-RqJd36STFYiRatQcKPrYTqZaEKa1KRd6EoF24Jau_IVKoqgoLjxbSRtd76CqdXNOYvD_S7nVFApTmKN0DoGk7gW38i6wVliUmo6Fl9CZcw5NggHq4TK4GJqADh4BVWyLASwiO3YZWTy78_h9O1ldnczGV9PBqN80MufR18XD7P-Y_7xml_dTu-fJufjWe99ejlcRcu-jDK99udVdLizfVDbNRr79b3aVsMICbdcw5e6ST2ttCIKM81cLhm1uIUdV_qYMIkpaypPMYwx95UH3G56PtOebRNNwaNVVF9wW9oLlIySOApiLcKkm8bFX6FOoC1jlQoCmAsASoEV5gooqhdiOxRTzlxSkDYXpDDryCMt2mnQkumpkGknUJEWv5sJSgWby_z6P1HHMhWhpD_9wHdC |
ContentType | Journal Article |
Copyright | 2018 日本膵臓学会 |
Copyright_xml | – notice: 2018 日本膵臓学会 |
CorporateAuthor | 東京女子医科大学微生物学免疫学 消化器内科 |
CorporateAuthor_xml | – name: 消化器内科 – name: 東京女子医科大学微生物学免疫学 |
DOI | 10.2958/suizo.33.758 |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1881-2805 |
EndPage | 767 |
ExternalDocumentID | cq0pancr_2018_003304_009_0758_07673138492 article_suizo_33_4_33_758_article_char_ja |
GroupedDBID | 123 2WC ALMA_UNASSIGNED_HOLDINGS CS3 JSF KQ8 OK1 RJT |
ID | FETCH-LOGICAL-j2859-faeb3decec2c14e498a43585179af124a134bcdc41118fcd086bdf4ed662e30d3 |
ISSN | 0913-0071 |
IngestDate | Thu Jul 10 16:10:45 EDT 2025 Wed Sep 03 06:28:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 4 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2859-faeb3decec2c14e498a43585179af124a134bcdc41118fcd086bdf4ed662e30d3 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/suizo/33/4/33_758/_article/-char/ja |
PageCount | 10 |
ParticipantIDs | medicalonline_journals_cq0pancr_2018_003304_009_0758_07673138492 jstage_primary_article_suizo_33_4_33_758_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20180825 |
PublicationDateYYYYMMDD | 2018-08-25 |
PublicationDate_xml | – month: 08 year: 2018 text: 20180825 day: 25 |
PublicationDecade | 2010 |
PublicationTitle | 膵臓 |
PublicationTitleAlternate | 膵臓 |
PublicationYear | 2018 |
Publisher | 日本膵臓学会 |
Publisher_xml | – name: 日本膵臓学会 |
References | 23) Thomas G, Rael L, Shimonkevitz R, Melamed I, Bar-Or D. Autoantibody reaction to myelin basic protein by plasma parvovirus B19 IgG in MS patients. Protein Pept Lett 2006; 13: 109-11. 31) Itkonen O, Stenman UH. TATI as a biomarker. Clin Chim Acta 2014; 431: 260-9. 58) Rumbo M, Nempont C, Kraehenbuhl JP, Sirard JC. Mucosal interplay among commensal and pathogenic bacteria: lessons from flagellin and Toll-like receptor 5. FEBS Lett 2006; 580: 2976-84. 9) Sodikoff JB, Keilin SA, Cai Q, et al. Mycophenolate mofetil for maintenance of remission in steroid-dependent autoimmune pancreatitis. World J Gastroenterol 2012; 18: 2287-90. 44) Schwaiger T, van den Brandt C, Fitzner B, et al. Autoimmune pancreatitis in MRL/Mp mice is a T cell-mediated disease responsive to cyclosporine A and rapamycin treatment. Gut 2014; 63: 494-505. 54) Tenthorey JL, Haloupek N, López-Blanco JR, et al. The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science 2017; 358: 888-93. 24) Pane JA, Fleming FE, Graham KL, Thomas HE, Kay TW, Coulson BS. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling. Sci Rep 2016; 6: 29697. 56) Flores-Langarica A, Marshall JL, Hitchcock J, et al. Systemic flagellin immunization stimulates mucosal CD103+ dendritic cells and drives Foxp3+ regulatory T cell and IgA responses in the mesenteric lymph node. J Immunol 2012; 189: 5745-54. 29) Haruta I, Shimiz K, Yanagisawa N, Shirator K, Yagi J. Commensal flora, is it an unwelcomed companion as a triggering factor of autoimmune pancreatitis? Front Physiol 2012; 3: 77. 42) Umemura T, Katsuyama Y, Hamano H, et al. Association analysis of Toll-like receptor 4 polymorphisms with autoimmune pancreatitis. Hum Immunol 2009; 70: 742-6. 46) Yamashina M, Nishio A, Nakayama S, et al. Comparative study on experimental autoimmune pancreatitis and its extrapancreatic involvement in mice. Pancreas 2012; 41: 1255-62. 15) Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 2010; 107: 12204-9. 20) Chamberlain ND, Vila OM, Volin MV, et al. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels. J Immunol 2012; 189: 475-83. 3) Ota M, Katsuyama Y, Hamano H, et al. Two critical genes (HLA-DRB1 and ABCF1) in the HLA region are associated with the susceptibility to autoimmune pancreatitis. Immunogenetics 2007; 59: 45-52. 55) Uematsu S, Akira S. Immune responses of TLR5 (+) lamina propria dendritic cells in enterobacterial infection. J Gastroenterol 2009; 44: 803-11. 27) Vadalà M, Poddighe D, Laurino C, Palmieri B. Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA J 2017; 8: 295-311. 50) Sanos SL, Kassub R, Testori M, et al. NLRC4 inflammasome-driven immunogenicity of a recombinant MVA mucosal vaccine encoding flagellin. Front Immunol 2017; 8: 1988. 52) Vijayendran C, Burgemeister S, Friehs K, Niehaus K, Flaschel E. 2DBase: 2D-PAGE database of Escherichia coli. Biochem Biophys Res Commun 2007; 363: 822-7. 14) Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331: 337-41. 40) Watanabe T, Yamashita K, Fujikawa S, et al. Involvement of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis. Arthritis Rheum 2012; 64: 914-24. 53) Yanagisawa N, Haruta I, Shimizu K, et al. Identification of commensal flora-associated antigen as a pathogenetic factor of autoimmune pancreatitis. Pancreatology 2014; 14: 100-6. 12) Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446-50. 43) Yanagisawa N, Haruta I, Kikuchi K, Shibata N, Yagi J. Are dysregulated inflammatory responses to commensal bacteria involved in the pathogenesis of hepatobiliary-pancreatic autoimmune disease? An analysis using mice models of primary biliary cirrhosis and autoimmune pancreatitis. ISRN Gastroenterology 2011; 2011: 513514. 57) Wilson RH, Maruoka S, Whitehead GS, et al. The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens. Nat Med 2012; 18: 1705-10. 2) Kawa S, Ota M, Yoshizawa K, et al. HLA DRB10405-DQB10401 haplotype is associated with autoimmune pancreatitis in the Japanese population. Gastroenterology 2002; 122: 1264-9. 5) Chang MC, Chang YT, Tien YW, et al. T-cell regulatory gene CTLA-4 polymorphism/haplotype association with autoimmune pancreatitis. Clin Chem 2007; 53: 1700-5. 10) Raina A, Yadav D, Krasinskas AM, et al. Evaluation and management of autoimmune pancreatitis: experience at a large US center. Am J Gastroenterol 2009; 104: 2295-306. 18) Iwasa K, Yamamoto S, Takahashi M, et al. Prostaglandin F2α FP receptor inhibitor reduces demyelination and motor dysfunction in a cuprizone-induced multiple sclerosis mouse model. Prostaglandins Leukot Essent Fatty Acids 2014; 91: 175-82. 47) Suzuki K, Makino M, Okada Y, et al. Exocrinopathy resembling Sjögren's syndrome induced by a murine retrovirus. Lab Invest 1993; 69: 430-5. 32) Zhou Z, Wu Y, Chen L, et al. Heat shock protein 10 of Chlamydophila pneumoniae induces proinflammatory cytokines through Toll-like receptor (TLR) 2 and TLR4 in human monocytes THP-1. In Vitro Cell Dev Biol Anim 2011; 47: 541-9. 36) Nishio A, Asada M, Uchida K, Fukui T, Chiba T, Okazaki K. The role of innate immunity in the pathogenesis of experimental autoimmune pancreatitis in mice. Pancreas 2011; 40: 95-102. 41) Akitake R, Watanabe T, Zaima C, et al. Possible involvement of T helper type 2 responses to Toll-like receptor ligands in IgG4-related sclerosing disease. Gut 2010; 59: 542-5. 48) Watanabe S, Suzuki K, Kawauchi Y, et al. Kinetic analysis of the development of pancreatic lesions in mice infected with a murine retrovirus. Clin Immunol 2003; 109: 212-23. 30) Zheng J, Ather JL, Sonstegard TS, Kerr DE. Characterization of the infection-responsive bovine lactoferrin promoter. Gene 2005; 353: 107-17. 6) Ota M, Ito T, Umemura T, et al. Polymorphism in the KCNA3 gene is associated with susceptibility to autoimmune pancreatitis in the Japanese population. Dis Markers 2011; 31: 223-9. 17) Szymula A, Rosenthal J, Szczerba BM, Bagavant H, Fu SM, Deshmukh US. T cell epitope mimicry between Sjögren's syndrome Antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria. Clin Immunol 2014; 152: 1-9. 21) Dlugosz A, Zakikhany K, Acevedo N, D'Amato M, Lindberg G. Increased expression of Toll-like receptors 4, 5, and 9 in small bowel mucosa from patients with irritable bowel syndrome. Biomed Res Int 2017; 2017: 9624702. 39) Fukui Y, Uchida K, Sakaguchi Y, et al. Possible involvement of Toll-like receptor 7 in the development of type 1 autoimmune pancreatitis. J Gastroenterol 2015; 50: 435-44. 1) Shimosegawa T, Chari ST, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas 2011; 40: 352-8. 8) Buechter M, Klein CG, Kloeters C, et al. Tacrolimus as a reasonable alternative in a patient with steroid-dependent and thiopurine-refractory autoimmune pancreatitis with IgG4-associated cholangitis. Z Gastroenterol 2014; 52: 564-8. 38) Masamune A, Kikuta K, Watanabe T, Satoh K, Satoh A, Shimosegawa T. Pancreatic stellate cells express Toll-like receptors. J Gastroenterol 2008; 43: 352-62. 51) Haruta I, Yanagisawa N, Kawamura S, et al. A mouse model of autoimmune pancreatitis with salivary gland involvement triggered by innate immunity via persistent exposure to avirulent bacteria. Lab Invest 2010; 90: 1757-69. 34) Ko SB, Mizuno N, Yatabe Y, et al. Aquaporin 1 water channel is overexpressed in the plasma membranes of pancreatic ducts in patients with autoimmune pancreatitis. J Med Invest 2009; 56 Suppl: 318-21. 45) Watanabe T, Yamashita K, Arai Y, et al. Chronic fibro-inflammatory responses in autoimmune pancreatitis depend on IFN-α and IL-33 produced by plasmacytoid dendritic cells. J Immunol 2017; 198: 3886-96. 13) Hamada S, Masamune A, Nabeshima T, Shimosegawa T. Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J Exp Med 2018; 244: 113-7. 25) Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998; 4: 781-5. 22) Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? Virol J 2017; 14: 42. 7) Hirth M, Vujasinovic M, Münch M, et al. Monitoring and predicting disease activity in autoimmune pancreatitis with the M-ANNHEIM-AiP-Activity-Score. Pancreatology 2018; 18: 29-38. 49) Li H, Liao T, Debowski AW, et al. Lipopolysaccharide structure and biosynthesis in Helicobacter pylori. Helicobacter 2016; 21: 445-61. 19) Aoki S. Rheumatoid arthritis and enteric bacteria. Jpn J Rheumatol 1999; 9: 325-52. 35) Shiokawa M, Kodama Y, Kuriyama K, et al. Pathogenicity of IgG in patients with IgG4-related disease. Gut 2016; 65: 1322-32. 4) Kojima M, Sipos B, Klapper W, et al. Autoimmune pancreatitis: frequency, IgG4 expression, and clonality of T and B cells. Am J Surg Pathol 2007; 31: 521-8. 11) Carruthers MN, Topazian MD, Khosroshahi A, et al. Rituximab for IgG 4-related disease: a prospective, open-label trial. Ann Rheum Dis 2015; 74: 1171-7. 26) Sanderson NS, Zimmermann M, Eilinger L, et al. Cocapture of cognate and bystander antigens can activate autoreactive B cells. Proc Natl Acad Sci U S A 2017; 114: 734-9. 28) Takizawa S, Endo T, Wanjia X, Tanaka S, Takahashi M, Kobayashi T. HSP 10 is a new autoantigen in both autoimmune pancreatitis and fulminant type 1 diabetes. Biochem Biophys Res Commun 2009; 386: 192-6. 16) Ogasawara M, Kono DH, Yu D |
References_xml | – reference: 39) Fukui Y, Uchida K, Sakaguchi Y, et al. Possible involvement of Toll-like receptor 7 in the development of type 1 autoimmune pancreatitis. J Gastroenterol 2015; 50: 435-44. – reference: 49) Li H, Liao T, Debowski AW, et al. Lipopolysaccharide structure and biosynthesis in Helicobacter pylori. Helicobacter 2016; 21: 445-61. – reference: 4) Kojima M, Sipos B, Klapper W, et al. Autoimmune pancreatitis: frequency, IgG4 expression, and clonality of T and B cells. Am J Surg Pathol 2007; 31: 521-8. – reference: 21) Dlugosz A, Zakikhany K, Acevedo N, D'Amato M, Lindberg G. Increased expression of Toll-like receptors 4, 5, and 9 in small bowel mucosa from patients with irritable bowel syndrome. Biomed Res Int 2017; 2017: 9624702. – reference: 20) Chamberlain ND, Vila OM, Volin MV, et al. TLR5, a novel and unidentified inflammatory mediator in rheumatoid arthritis that correlates with disease activity score and joint TNF-α levels. J Immunol 2012; 189: 475-83. – reference: 2) Kawa S, Ota M, Yoshizawa K, et al. HLA DRB10405-DQB10401 haplotype is associated with autoimmune pancreatitis in the Japanese population. Gastroenterology 2002; 122: 1264-9. – reference: 26) Sanderson NS, Zimmermann M, Eilinger L, et al. Cocapture of cognate and bystander antigens can activate autoreactive B cells. Proc Natl Acad Sci U S A 2017; 114: 734-9. – reference: 1) Shimosegawa T, Chari ST, Frulloni L, et al. International consensus diagnostic criteria for autoimmune pancreatitis: guidelines of the International Association of Pancreatology. Pancreas 2011; 40: 352-8. – reference: 28) Takizawa S, Endo T, Wanjia X, Tanaka S, Takahashi M, Kobayashi T. HSP 10 is a new autoantigen in both autoimmune pancreatitis and fulminant type 1 diabetes. Biochem Biophys Res Commun 2009; 386: 192-6. – reference: 59) Jeannin P, Lecoanet S, Delneste Y, Gauchat JF, Bonnefoy JY. IgE versus IgG4 production can be differentially regulated by IL-10. J Immunol 1998; 160: 3555-61. – reference: 52) Vijayendran C, Burgemeister S, Friehs K, Niehaus K, Flaschel E. 2DBase: 2D-PAGE database of Escherichia coli. Biochem Biophys Res Commun 2007; 363: 822-7. – reference: 14) Atarashi K, Tanoue T, Shima T, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331: 337-41. – reference: 53) Yanagisawa N, Haruta I, Shimizu K, et al. Identification of commensal flora-associated antigen as a pathogenetic factor of autoimmune pancreatitis. Pancreatology 2014; 14: 100-6. – reference: 56) Flores-Langarica A, Marshall JL, Hitchcock J, et al. Systemic flagellin immunization stimulates mucosal CD103+ dendritic cells and drives Foxp3+ regulatory T cell and IgA responses in the mesenteric lymph node. J Immunol 2012; 189: 5745-54. – reference: 37) Qu WM, Miyazaki T, Terada M, et al. A novel autoimmune pancreatitis model in MRL mice treated with polyinosinic: polycytidylic acid. Clin Exp Immunol 2002; 129: 27-34. – reference: 13) Hamada S, Masamune A, Nabeshima T, Shimosegawa T. Differences in gut microbiota profiles between autoimmune pancreatitis and chronic pancreatitis. Tohoku J Exp Med 2018; 244: 113-7. – reference: 57) Wilson RH, Maruoka S, Whitehead GS, et al. The Toll-like receptor 5 ligand flagellin promotes asthma by priming allergic responses to indoor allergens. Nat Med 2012; 18: 1705-10. – reference: 32) Zhou Z, Wu Y, Chen L, et al. Heat shock protein 10 of Chlamydophila pneumoniae induces proinflammatory cytokines through Toll-like receptor (TLR) 2 and TLR4 in human monocytes THP-1. In Vitro Cell Dev Biol Anim 2011; 47: 541-9. – reference: 16) Ogasawara M, Kono DH, Yu DT. Mimicry of human histocompatibility HLA-B27 antigens by Klebsiella pneumoniae. Infect Immun 1986; 51: 901-8. – reference: 34) Ko SB, Mizuno N, Yatabe Y, et al. Aquaporin 1 water channel is overexpressed in the plasma membranes of pancreatic ducts in patients with autoimmune pancreatitis. J Med Invest 2009; 56 Suppl: 318-21. – reference: 38) Masamune A, Kikuta K, Watanabe T, Satoh K, Satoh A, Shimosegawa T. Pancreatic stellate cells express Toll-like receptors. J Gastroenterol 2008; 43: 352-62. – reference: 54) Tenthorey JL, Haloupek N, López-Blanco JR, et al. The structural basis of flagellin detection by NAIP5: A strategy to limit pathogen immune evasion. Science 2017; 358: 888-93. – reference: 5) Chang MC, Chang YT, Tien YW, et al. T-cell regulatory gene CTLA-4 polymorphism/haplotype association with autoimmune pancreatitis. Clin Chem 2007; 53: 1700-5. – reference: 48) Watanabe S, Suzuki K, Kawauchi Y, et al. Kinetic analysis of the development of pancreatic lesions in mice infected with a murine retrovirus. Clin Immunol 2003; 109: 212-23. – reference: 3) Ota M, Katsuyama Y, Hamano H, et al. Two critical genes (HLA-DRB1 and ABCF1) in the HLA region are associated with the susceptibility to autoimmune pancreatitis. Immunogenetics 2007; 59: 45-52. – reference: 7) Hirth M, Vujasinovic M, Münch M, et al. Monitoring and predicting disease activity in autoimmune pancreatitis with the M-ANNHEIM-AiP-Activity-Score. Pancreatology 2018; 18: 29-38. – reference: 51) Haruta I, Yanagisawa N, Kawamura S, et al. A mouse model of autoimmune pancreatitis with salivary gland involvement triggered by innate immunity via persistent exposure to avirulent bacteria. Lab Invest 2010; 90: 1757-69. – reference: 23) Thomas G, Rael L, Shimonkevitz R, Melamed I, Bar-Or D. Autoantibody reaction to myelin basic protein by plasma parvovirus B19 IgG in MS patients. Protein Pept Lett 2006; 13: 109-11. – reference: 29) Haruta I, Shimiz K, Yanagisawa N, Shirator K, Yagi J. Commensal flora, is it an unwelcomed companion as a triggering factor of autoimmune pancreatitis? Front Physiol 2012; 3: 77. – reference: 46) Yamashina M, Nishio A, Nakayama S, et al. Comparative study on experimental autoimmune pancreatitis and its extrapancreatic involvement in mice. Pancreas 2012; 41: 1255-62. – reference: 42) Umemura T, Katsuyama Y, Hamano H, et al. Association analysis of Toll-like receptor 4 polymorphisms with autoimmune pancreatitis. Hum Immunol 2009; 70: 742-6. – reference: 36) Nishio A, Asada M, Uchida K, Fukui T, Chiba T, Okazaki K. The role of innate immunity in the pathogenesis of experimental autoimmune pancreatitis in mice. Pancreas 2011; 40: 95-102. – reference: 8) Buechter M, Klein CG, Kloeters C, et al. Tacrolimus as a reasonable alternative in a patient with steroid-dependent and thiopurine-refractory autoimmune pancreatitis with IgG4-associated cholangitis. Z Gastroenterol 2014; 52: 564-8. – reference: 17) Szymula A, Rosenthal J, Szczerba BM, Bagavant H, Fu SM, Deshmukh US. T cell epitope mimicry between Sjögren's syndrome Antigen A (SSA)/Ro60 and oral, gut, skin and vaginal bacteria. Clin Immunol 2014; 152: 1-9. – reference: 19) Aoki S. Rheumatoid arthritis and enteric bacteria. Jpn J Rheumatol 1999; 9: 325-52. – reference: 33) Radtke AL, O'Riordan MX. Homeostatic maintenance of pathogen-containing vacuoles requires TBK1-dependent regulation of aquaporin-1. Cell Microbiol 2008; 10: 2197-207. – reference: 15) Round JL, Mazmanian SK. Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci U S A 2010; 107: 12204-9. – reference: 55) Uematsu S, Akira S. Immune responses of TLR5 (+) lamina propria dendritic cells in enterobacterial infection. J Gastroenterol 2009; 44: 803-11. – reference: 27) Vadalà M, Poddighe D, Laurino C, Palmieri B. Vaccination and autoimmune diseases: is prevention of adverse health effects on the horizon? EPMA J 2017; 8: 295-311. – reference: 40) Watanabe T, Yamashita K, Fujikawa S, et al. Involvement of activation of toll-like receptors and nucleotide-binding oligomerization domain-like receptors in enhanced IgG4 responses in autoimmune pancreatitis. Arthritis Rheum 2012; 64: 914-24. – reference: 44) Schwaiger T, van den Brandt C, Fitzner B, et al. Autoimmune pancreatitis in MRL/Mp mice is a T cell-mediated disease responsive to cyclosporine A and rapamycin treatment. Gut 2014; 63: 494-505. – reference: 10) Raina A, Yadav D, Krasinskas AM, et al. Evaluation and management of autoimmune pancreatitis: experience at a large US center. Am J Gastroenterol 2009; 104: 2295-306. – reference: 30) Zheng J, Ather JL, Sonstegard TS, Kerr DE. Characterization of the infection-responsive bovine lactoferrin promoter. Gene 2005; 353: 107-17. – reference: 58) Rumbo M, Nempont C, Kraehenbuhl JP, Sirard JC. Mucosal interplay among commensal and pathogenic bacteria: lessons from flagellin and Toll-like receptor 5. FEBS Lett 2006; 580: 2976-84. – reference: 24) Pane JA, Fleming FE, Graham KL, Thomas HE, Kay TW, Coulson BS. Rotavirus acceleration of type 1 diabetes in non-obese diabetic mice depends on type I interferon signalling. Sci Rep 2016; 6: 29697. – reference: 43) Yanagisawa N, Haruta I, Kikuchi K, Shibata N, Yagi J. Are dysregulated inflammatory responses to commensal bacteria involved in the pathogenesis of hepatobiliary-pancreatic autoimmune disease? An analysis using mice models of primary biliary cirrhosis and autoimmune pancreatitis. ISRN Gastroenterology 2011; 2011: 513514. – reference: 47) Suzuki K, Makino M, Okada Y, et al. Exocrinopathy resembling Sjögren's syndrome induced by a murine retrovirus. Lab Invest 1993; 69: 430-5. – reference: 12) Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446-50. – reference: 50) Sanos SL, Kassub R, Testori M, et al. NLRC4 inflammasome-driven immunogenicity of a recombinant MVA mucosal vaccine encoding flagellin. Front Immunol 2017; 8: 1988. – reference: 9) Sodikoff JB, Keilin SA, Cai Q, et al. Mycophenolate mofetil for maintenance of remission in steroid-dependent autoimmune pancreatitis. World J Gastroenterol 2012; 18: 2287-90. – reference: 22) Fierz W. Multiple sclerosis: an example of pathogenic viral interaction? Virol J 2017; 14: 42. – reference: 18) Iwasa K, Yamamoto S, Takahashi M, et al. Prostaglandin F2α FP receptor inhibitor reduces demyelination and motor dysfunction in a cuprizone-induced multiple sclerosis mouse model. Prostaglandins Leukot Essent Fatty Acids 2014; 91: 175-82. – reference: 6) Ota M, Ito T, Umemura T, et al. Polymorphism in the KCNA3 gene is associated with susceptibility to autoimmune pancreatitis in the Japanese population. Dis Markers 2011; 31: 223-9. – reference: 35) Shiokawa M, Kodama Y, Kuriyama K, et al. Pathogenicity of IgG in patients with IgG4-related disease. Gut 2016; 65: 1322-32. – reference: 25) Horwitz MS, Bradley LM, Harbertson J, Krahl T, Lee J, Sarvetnick N. Diabetes induced by Coxsackie virus: initiation by bystander damage and not molecular mimicry. Nat Med 1998; 4: 781-5. – reference: 11) Carruthers MN, Topazian MD, Khosroshahi A, et al. Rituximab for IgG 4-related disease: a prospective, open-label trial. Ann Rheum Dis 2015; 74: 1171-7. – reference: 31) Itkonen O, Stenman UH. TATI as a biomarker. Clin Chim Acta 2014; 431: 260-9. – reference: 41) Akitake R, Watanabe T, Zaima C, et al. Possible involvement of T helper type 2 responses to Toll-like receptor ligands in IgG4-related sclerosing disease. Gut 2010; 59: 542-5. – reference: 45) Watanabe T, Yamashita K, Arai Y, et al. Chronic fibro-inflammatory responses in autoimmune pancreatitis depend on IFN-α and IL-33 produced by plasmacytoid dendritic cells. J Immunol 2017; 198: 3886-96. |
SSID | ssj0052676 ssib000872181 ssib022575306 ssib058494463 ssib002484530 ssib015609839 ssib053392560 |
Score | 2.1302419 |
Snippet | 自己免疫性膵炎(autoimmune pancreatitis:AIP)type... 「要旨」:自己免疫性膵炎(autoimmune pancreatitis : AIP)type 1の病態に自然免疫と獲得免疫の両者が関与する知見が積み重ねられている. AIPは免疫系感受性遺伝子を背景として何らかの環境因子の関与により発症すると考えられているが, 成因の詳細は不明である. 環境因子に着目すると,... |
SourceID | medicalonline jstage |
SourceType | Publisher |
StartPage | 758 |
SubjectTerms | 常在細菌 病原体関連分子パターン 自己免疫性膵炎 |
Title | 8.細菌構成分子と自己免疫性膵炎 |
URI | https://www.jstage.jst.go.jp/article/suizo/33/4/33_758/_article/-char/ja http://mol.medicalonline.jp/en/journal/download?GoodsID=cq0pancr/2018/003304/009&name=0758-0767j |
Volume | 33 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 膵臓, 2018/08/25, Vol.33(4), pp.758-767 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1fa9RAEF9qBRFE_Iv1H31wH3Mmu5vs7JvJNUdRKggt9C3cJXvgga3W9qVPKlgLau2TX6GiCAqKL34bubZvfgVndtO7VH2owpFbspPfzuxssjPJ7gxjN-J-KEUZ2iARxgaqslFAX9MCFVuw1oCoXB6yubvJ7IK6vRgvThybbaxaWlvttcr1v-4r-R-t4jnUK-2S_QfNjkDxBJZRv3hEDePxSDoGnnd41uaQ81zzTPEs5Dlw6HBo8zzhqeaQUQGAG6yKqQAJFdIZd0aiJclTcFdpnqZUlSFU5IjxN0PIBqE8TkiYuQPJYqoCga03LdxGrcM0owcLARjkV1Ihy3mqSL8OPyPmD7ga0zsWfMumTWw6-sRxiCgob4qSNukRlmoMtYy8O3ovSOaqDTY0pjfcAM86jl6O8LVjzjj6jKey-WIkokDbgd9E7Yay4w17Lj5gsv1nB9SSpYljuc1N2nxBSnkvQp8gpmX99AAQBQLCuDl_-EAe9X2iGpOB9kHpa7tC-7Qjv09ZwsTgBuf99eWWlK3RRYeCgNdDrHBkhZSFogPSFgc1tEmvGKCncFxo7RYs3LnXNLS1iA4FugMVjx1H2k5vYBwfFh_y6MaOv7-jT2BEw5FGq9Uol0fB2zyxSFwax1Gf-S0mJNvNpmRo5g3Q6aFoFqce-A-RPiBMw6abP8NO187YdOqFO8smBt1z7MRcvdzkPGvBz-9be18-7b95tbvzcndze7i5Mfy4_ePpu_0X74ffPg-fv957-2H3yc7-xte9Z1sX2EInn2_PBnWCkWBAcRuDftf2ZGVLW4oyUlYZ6KL3ABS1rttHw7cbSdUrq1KhQQD9skL3v1f1la2SRFgZVvIim1xaXrKX2LSu-lVsBCSqJ1VF6wm7Cq1xyoiqJWg9xcBLXjz0UWSKI6t0it061FdF_QR6XJSPQjQZypWChj9F-ZWhwj9ThAQT4oiTkURVicv_3_oVdnJ8c11lk6sra_Ya2uGrvetuiP0CqSuzIg |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=8%EF%BC%8E%E7%B4%B0%E8%8F%8C%E6%A7%8B%E6%88%90%E5%88%86%E5%AD%90%E3%81%A8%E8%87%AA%E5%B7%B1%E5%85%8D%E7%96%AB%E6%80%A7%E8%86%B5%E7%82%8E&rft.jtitle=%E8%86%B5%E8%87%93&rft.au=%E6%9F%B3%E6%BE%A4%2C+%E7%9B%B4%E5%AD%90&rft.au=%E5%85%AB%E6%9C%A8%2C+%E6%B7%B3%E4%BA%8C&rft.au=%E5%BE%B3%E9%87%8D%2C+%E5%85%8B%E5%B9%B4&rft.au=%E9%98%BF%E9%83%A8%2C+%E7%BE%A9%E5%BB%A3&rft.date=2018-08-25&rft.pub=%E6%97%A5%E6%9C%AC%E8%86%B5%E8%87%93%E5%AD%A6%E4%BC%9A&rft.issn=0913-0071&rft.eissn=1881-2805&rft.volume=33&rft.issue=4&rft.spage=758&rft.epage=767&rft_id=info:doi/10.2958%2Fsuizo.33.758&rft.externalDocID=article_suizo_33_4_33_758_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0913-0071&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0913-0071&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0913-0071&client=summon |