Preserved Hippocampal Glucose Metabolism on 18F-FDG PET after Transplantation of Human Umbilical Cord Blood-derived Mesenchymal Stem Cells in Chronic Epileptic Rats
Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) may be a promising modality for treating medial temporal lobe epilepsy. (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a noninvasive method for monitoring in vivo glucose metabolism. We evaluated the efficacy o...
Saved in:
Published in | Journal of Korean Medical Science Vol. 30; no. 9; pp. 1232 - 1240 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English Japanese |
Published |
Korea (South)
Korean Academy of Medical Sciences
01.09.2015
The Korean Academy of Medical Sciences 대한의학회 |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | Human umbilical cord blood-derived mesenchymal stem cells (hUCB-MSCs) may be a promising modality for treating medial temporal lobe epilepsy. (18)F-fluorodeoxyglucose positron emission tomography (FDG-PET) is a noninvasive method for monitoring in vivo glucose metabolism. We evaluated the efficacy of hUCB-MSCs transplantation in chronic epileptic rats using FDG-PET. Rats with recurrent seizures were randomly assigned into three groups: the stem cell treatment (SCT) group received hUCB-MSCs transplantation into the right hippocampus, the sham control (ShC) group received same procedure with saline, and the positive control (PC) group consisted of treatment-negative epileptic rats. Normal rats received hUCB-MSCs transplantation acted as the negative control (NC). FDG-PET was performed at pre-treatment baseline and 1- and 8-week posttreatment. Hippocampal volume was evaluated and histological examination was done. In the SCT group, bilateral hippocampi at 8-week after transplantation showed significantly higher glucose metabolism (0.990 ± 0.032) than the ShC (0.873 ± 0.087; P < 0.001) and PC groups (0.858 ± 0.093; P < 0.001). Histological examination resulted that the transplanted hUCB-MSCs survived in the ipsilateral hippocampus and migrated to the contralateral hippocampus but did not differentiate. In spite of successful engraftment, seizure frequency among the groups was not significantly different. Transplanted hUCB-MSCs can engraft and migrate, thereby partially restoring bilateral hippocampal glucose metabolism. The results suggest encouraging effect of hUCB-MSCs on restoring epileptic networks. |
---|---|
Bibliography: | G704-000345.2015.30.9.008 |
ISSN: | 1011-8934 1598-6357 |
DOI: | 10.3346/jkms.2015.30.9.1232 |