An efficient way of increasing the total entropy of mixing in high-entropy-alloy compounds: a case of NaCl-type (Ag,In,Pb,Bi)Te1−xSex (x = 0.0, 0.25, 0.5) superconductors

We propose an efficient way of increasing the entropy of mixing in high-entropy-alloy-type compounds, which can be achieved by multi-site alloying. As an example of this concept, we report the synthesis and observation of polycrystalline samples of new high-entropy-alloy-type metal chalcogenides (Ag...

Full description

Saved in:
Bibliographic Details
Published inDalton transactions : an international journal of inorganic chemistry Vol. 49; no. 26; pp. 9118 - 9122
Main Authors Yamashita, Aichi, Jha, Rajveer, Goto, Yosuke, Matsuda, Tatsuma D, Aoki, Yuji, Mizuguchi, Yoshikazu
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 01.01.2020
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We propose an efficient way of increasing the entropy of mixing in high-entropy-alloy-type compounds, which can be achieved by multi-site alloying. As an example of this concept, we report the synthesis and observation of polycrystalline samples of new high-entropy-alloy-type metal chalcogenides (Ag,In,Pb,Bi)Te1−xSex (x = 0.0, 0.25, and 0.5) with a NaCl-type structure. The samples were synthesized using high pressure synthesis. Superconductivity with transition temperatures of 2.7, 2.5, and 2.0 K was observed with x = 0.0, 0.25, and 0.5, respectively. To investigate the multi-site alloying effect on the entropy of mixing (ΔSmix) for the examined samples, we calculated the total ΔSmix for two crystallographic sites. For the samples with x = 0.25 and 0.5, ΔSmix reaches 1.89R and 2.00R, respectively, which exceed the ΔSmix of 1.79R for a simple (single-site) high-entropy alloy containing six different elements.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:1477-9226
1477-9234
DOI:10.1039/d0dt01880e