Room temperature NO2 sensing: what advantage does the rGO-NiO nanocomposite have over pristine NiO?
In recent years, there has been increasing interest in synthesis of reduced graphene oxide (rGO)-metal oxide semiconductor (MOS) nanocomposites for room temperature gas sensing applications. Generally, the sensitivity of a MOS can be obviously enhanced by the incorporation of rGO. However, a lack of...
Saved in:
Published in | Physical chemistry chemical physics : PCCP Vol. 17; no. 22; pp. 14903 - 14911 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
14.06.2015
|
Online Access | Get full text |
Cover
Loading…
Summary: | In recent years, there has been increasing interest in synthesis of reduced graphene oxide (rGO)-metal oxide semiconductor (MOS) nanocomposites for room temperature gas sensing applications. Generally, the sensitivity of a MOS can be obviously enhanced by the incorporation of rGO. However, a lack of knowledge regarding how rGO can enhance gas-sensing performances of MOSs impedes its sensing applications. Herein, in order to get an insight into the sensing mechanism of rGO-MOS nanocomposites and further improve the sensing performances of NiO-based sensors at room temperature, an rGO-NiO nanocomposite was synthesized. Through a comparison study on room temperature NO2 sensing of rGO-NiO and pristine NiO, an inverse gas-sensing behavior in different NO2 concentration ranges was observed and the sensitivity of rGO-NiO was enhanced obviously in the high concentration range (7-60 ppm). Significantly, the stimulating effect of rGO on the recovery rate was confirmed by the sensing characteristics of rGO-NiO that was advantageous for the development of NO2 sensors at room temperature. By comprehending the electronic interactions between the rGO-MOS nanocomposite and the target gas, this work may open up new possibilities for further improvement of graphene-based hybrid materials with even higher sensing performances. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1463-9084 |
DOI: | 10.1039/c5cp01987g |