Nanoscale mapping of excitonic processes in single-layer MoS2 using tip-enhanced photoluminescence microscopy

In two-dimensional (2D) semiconductors, photoluminescence originating from recombination processes involving neutral electron-hole pairs (excitons) and charged complexes (trions) is strongly affected by the localized charge transfer due to inhomogeneous interactions with the local environment and su...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 8; no. 20; p. 10564
Main Authors Su, Weitao, Kumar, Naresh, Mignuzzi, Sandro, Crain, Jason, Roy, Debdulal
Format Journal Article
LanguageEnglish
Published England 19.05.2016
Online AccessGet full text

Cover

Loading…
More Information
Summary:In two-dimensional (2D) semiconductors, photoluminescence originating from recombination processes involving neutral electron-hole pairs (excitons) and charged complexes (trions) is strongly affected by the localized charge transfer due to inhomogeneous interactions with the local environment and surface defects. Herein, we demonstrate the first nanoscale mapping of excitons and trions in single-layer MoS2 using the full spectral information obtained via tip-enhanced photoluminescence (TEPL) microscopy along with tip-enhanced Raman spectroscopy (TERS) imaging of a 2D flake. Finally, we show the mapping of the PL quenching centre in single-layer MoS2 with an unprecedented spatial resolution of 20 nm. In addition, our research shows that unlike in aperture-scanning near field microscopy, preferential exciton emission mapping at the nanoscale using TEPL and Raman mapping using TERS can be obtained simultaneously using this method that can be used to correlate the structural and excitonic properties.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2040-3372
2040-3372
DOI:10.1039/c5nr07378b