腎臓移植におけるエピトープミスマッチ解析の意義について

「I. はじめに」多くの要因が腎移植患者の長期生存に影響を及ぼしているが, 中でもヒト白血球抗原(Human Leukocyte Antigen: HLA)は特に重要である. HLAタイピング技術は進化し, 3次元の構成要素をより正確に決定可能になった. そして, HLA抗体検査の最新技術が普及し, リスク予測も可能になりつつある. しかしながら, 拒絶反応発症原因や移植腎喪失に抗体が関与していることは変わらない. これは, 主要組織適合遺伝子複合体(Major Histocompatibility Complex: MHC)が拒絶反応に深く関与しており, HLAミスマッチ数や種類が細胞性と抗...

Full description

Saved in:
Bibliographic Details
Published in移植 Vol. 56; no. 3; pp. 293 - 303
Main Authors 尾本, 和也, 田邉, 一成, 古澤, 美由紀, 石田, 英樹, 神澤, 太一, 海上, 耕平, 清水, 朋一
Format Journal Article
LanguageJapanese
Published 一般社団法人 日本移植学会 2021
日本移植学会
Subjects
Online AccessGet full text
ISSN0578-7947
2188-0034
DOI10.11386/jst.56.3_293

Cover

Abstract 「I. はじめに」多くの要因が腎移植患者の長期生存に影響を及ぼしているが, 中でもヒト白血球抗原(Human Leukocyte Antigen: HLA)は特に重要である. HLAタイピング技術は進化し, 3次元の構成要素をより正確に決定可能になった. そして, HLA抗体検査の最新技術が普及し, リスク予測も可能になりつつある. しかしながら, 拒絶反応発症原因や移植腎喪失に抗体が関与していることは変わらない. これは, 主要組織適合遺伝子複合体(Major Histocompatibility Complex: MHC)が拒絶反応に深く関与しており, HLAミスマッチ数や種類が細胞性と抗体関連拒絶反応の両方を引き起こすことを示唆している. HLA抗体は, 術前に検出されるドナー特異的HLA抗体(Donor Specific Antibody: DSA)も重要であるが, 移植後に検出されるde novo DSA(dnDSA)も重要とされ, 腎機能を悪化させる独立した危険因子であることは広く知られている.
AbstractList 「I. はじめに」多くの要因が腎移植患者の長期生存に影響を及ぼしているが, 中でもヒト白血球抗原(Human Leukocyte Antigen: HLA)は特に重要である. HLAタイピング技術は進化し, 3次元の構成要素をより正確に決定可能になった. そして, HLA抗体検査の最新技術が普及し, リスク予測も可能になりつつある. しかしながら, 拒絶反応発症原因や移植腎喪失に抗体が関与していることは変わらない. これは, 主要組織適合遺伝子複合体(Major Histocompatibility Complex: MHC)が拒絶反応に深く関与しており, HLAミスマッチ数や種類が細胞性と抗体関連拒絶反応の両方を引き起こすことを示唆している. HLA抗体は, 術前に検出されるドナー特異的HLA抗体(Donor Specific Antibody: DSA)も重要であるが, 移植後に検出されるde novo DSA(dnDSA)も重要とされ, 腎機能を悪化させる独立した危険因子であることは広く知られている.
Author 尾本, 和也
神澤, 太一
海上, 耕平
田邉, 一成
古澤, 美由紀
石田, 英樹
清水, 朋一
Author_xml – sequence: 1
  fullname: 尾本, 和也
  organization: 東京女子医科大学泌尿器科
– sequence: 1
  fullname: 田邉, 一成
  organization: 東京女子医科大学泌尿器科
– sequence: 1
  fullname: 古澤, 美由紀
  organization: 東京女子医科大学泌尿器科
– sequence: 1
  fullname: 石田, 英樹
  organization: 東京女子医科大学移植管理科
– sequence: 1
  fullname: 神澤, 太一
  organization: 東京女子医科大学泌尿器科
– sequence: 1
  fullname: 海上, 耕平
  organization: 東京女子医科大学移植管理科
– sequence: 1
  fullname: 清水, 朋一
  organization: 東京女子医科大学泌尿器科
BookMark eNo1kE1LHEEQhhtRcDUe_Rmz1nRNz1QfcggSP0CQQHJuZnpbnXWcDTPrweNsK4aIJiGB3Mwh4geB3ENC_kzBuj_D8etSL1TV-7zwzonpclA6IRZD6IYhUrzUr4ddFXfRSI1ToiNDogAAo2nRAZVQkOgomRULdZ1nAJLaO2BHvJkcnU2Ov95e_R1fnHLzi5uP3Hzh0QmPrtl_Y_-B_T_239n_4NEf9ufsPftmcvVzfP6Zm9_jw0-3_28ejBfcHHJz-ULMbKVF7RaedF68W3n9dnkt2NhcXV9-tRH0Zax0kGypTBIiJc6hiyLlSIdktbbW9TQoJGtV-0ihTXtZZpUlS5D1XIQxEFmcF6uP3D3Xy21aDMoiL53pD_arss01tqC8Huw6I0GGBkDFgAZCaaAtyAACokZJsW5JLx9JbYXptjPvq3wvrQ5MWg1zW7TIemhUbPB-3Huf93YnrUw_xTuVaI3j
ContentType Journal Article
Copyright 2021 一般社団法人 日本移植学会
Copyright_xml – notice: 2021 一般社団法人 日本移植学会
CorporateAuthor 東京女子医科大学泌尿器科
東京女子医科大学移植管理科
CorporateAuthor_xml – name: 東京女子医科大学泌尿器科
– name: 東京女子医科大学移植管理科
DOI 10.11386/jst.56.3_293
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2188-0034
EndPage 303
ExternalDocumentID cl8isoke_2021_005603_012_0293_03033932869
article_jst_56_3_56_293_article_char_ja
GroupedDBID 5GY
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
MOJWN
OK1
RJT
ID FETCH-LOGICAL-j2659-7f5b283387ee3e445e8918c99cced90538cc565981cadbbc5c8c80bde436088c3
ISSN 0578-7947
IngestDate Thu Jul 10 16:11:41 EDT 2025
Wed Sep 03 06:30:59 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language Japanese
License https://creativecommons.org/licenses/by-nc-nd/4.0/deed.ja
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2659-7f5b283387ee3e445e8918c99cced90538cc565981cadbbc5c8c80bde436088c3
OpenAccessLink https://www.jstage.jst.go.jp/article/jst/56/3/56_293/_article/-char/ja
PageCount 11
ParticipantIDs medicalonline_journals_cl8isoke_2021_005603_012_0293_03033932869
jstage_primary_article_jst_56_3_56_293_article_char_ja
PublicationCentury 2000
PublicationDate 20210000
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – year: 2021
  text: 20210000
PublicationDecade 2020
PublicationTitle 移植
PublicationTitleAlternate 移植
PublicationYear 2021
Publisher 一般社団法人 日本移植学会
日本移植学会
Publisher_xml – name: 一般社団法人 日本移植学会
– name: 日本移植学会
References 17) Tambur AR, Buckingham M, McDonald L. Development of donor-specific and non-donor-specific HLA-DP antibodies post-transplant: the role of epitope sharing and epitope matching. Clin Transpl 2006; 32: 399-404.
14) Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 1991; 219: 277-319.
4) DeVos JM, Gaber AO, Knight RJ, et al. Donor-specific HLA-DQ antibodies may contribute to poor graft outcome after renal transplantation. Kidney Int 2012; 82: 598-604.
12) Liapis H, Gaut JP, Klein C. Banff histopathological consensus criteria for preimplantation kidney biopsies. Am J Transplant 2017; 17: 140-150.
2) Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant 2012; 12 : 1157-1167.
7) Wiebe C, Pochinco D, Blydt-Hansen TD, et al. Class II HLA epitope matching—a strategy to minimize de novo donor-specific antibody development and improve outcomes: class II epitope matching to minimize de novo DSA. Am J Transplant 2013; 13: 3114-3122.
10) El-Awar N, Jucaud V, Nguyen A. HLA epitopes: the targets of monoclonal and alloantibodies defined. J Immunol Res 2017; 2017: 1-16.
3) Wiebe C, Rush DN, Nevins TE, et al. Class II eplet mismatch modulates tacrolimus trough levels required to prevent donor-specific antibody development. J Am Soc Nephrol 2017; 28: 3353-3362.
23) Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant 2012; 12: 1157-1167.
5) Willicombe M, Brookes P, Sergeant R, et al. De novo DQ donor-specific antibodies are associated with a significant risk of antibody-mediated rejection and transplant glomerulopathy. Transplantation 2012; 94: 172-177.
11) Ikeda N, Kojima H, Nishikawa M, et al. Determination of HLA-A, -C, -B, -DRB1 allele and haplotype frequency in Japanese population based on family study. Tissue Antigens 2015; 85: 252-259.
6) Ntokou IS, Iniotaki AG, Kontou EN, et al. Long-term follow up for anti-HLA donor specific antibodies postrenal transplantation: high immunogenicity of HLA class II graft molecules. Transpl Int 2011; 24: 1084-1093.
20) Kosmoliaptsis V, Mallon DH, Chen Y. Alloantibody responses after renal transplant failure can be better predicted by donor-recipient HLA amino acid sequence and physicochemical disparities than conventional HLA matching. Am J Transplant 2016; 16: 2139-2147.
18) Cai J, Terasaki PI, Mao Q, et al. Development of nondonor-specific HLA-DR antibodies in allograft recipients is associated with shared epitopes with mismatched donor DR antigens. Am J Transplant 2006; 6: 2947-2954.
13) Bjorkman PJ, Strominger JL, Wiley DC. Crystallization and X-ray diffraction studies on the histocompatibility antigens HLA-A2 and HLA-A28 from human cell membranes. J Mol Biol 1985; 186: 205-210.
1) Opelz G, Döhler B. Effect of human leukocyte antigen compatibility on kidney graft survival: comparative analysis of two decades. Transplantation 2007; 84: 137-143.
8) Duquesnoy RJ. A structurally based approach to determine HLA compatibility at the humoral immune level. Hum Immunol 2006; 67: 847-862.
9) Duquesnoy RJ. Antibody—reactive epitope determination with HLAMatchmaker and its clinical applications. Tissue Antigens 2011; 77: 525-534.
21) Sapir-Pichhadze R, Tinckam K, Quach K. HLA-DR and -DQ eplet mismatches and transplant glomerulopathy: a nested case-control study. Am J Transplant 2015; 15: 137-148.
22) El-Zoghby ZM, Stegall MD, Lager DJ, et al. Identifying specific causes of kidney allograft loss. Am J Transplant 2009; 9: 527-535.
15) Marrari M, Conca R, Praticò-Barbato L, et al. Brief report: why did two patients who type for HLA-B13 have antibodies that react with all Bw4 antigens except HLA-B13? Transpl Immunol 2011; 25: 217-220.
19) Tambur AR, Rosati J, Roitberg S. Epitope analysis of HLA-DQ antigens: what does the antibody see? Transplantation 2014; 98: 157-166.
16) Marrari M, Duquesnoy RJ. Why can sensitization by an HLA-DR2 mismatch lead to antibodies that react also with HLA-DR1? Hum Immunol 2009; 70: 403-409.
References_xml – reference: 1) Opelz G, Döhler B. Effect of human leukocyte antigen compatibility on kidney graft survival: comparative analysis of two decades. Transplantation 2007; 84: 137-143.
– reference: 3) Wiebe C, Rush DN, Nevins TE, et al. Class II eplet mismatch modulates tacrolimus trough levels required to prevent donor-specific antibody development. J Am Soc Nephrol 2017; 28: 3353-3362.
– reference: 11) Ikeda N, Kojima H, Nishikawa M, et al. Determination of HLA-A, -C, -B, -DRB1 allele and haplotype frequency in Japanese population based on family study. Tissue Antigens 2015; 85: 252-259.
– reference: 8) Duquesnoy RJ. A structurally based approach to determine HLA compatibility at the humoral immune level. Hum Immunol 2006; 67: 847-862.
– reference: 9) Duquesnoy RJ. Antibody—reactive epitope determination with HLAMatchmaker and its clinical applications. Tissue Antigens 2011; 77: 525-534.
– reference: 15) Marrari M, Conca R, Praticò-Barbato L, et al. Brief report: why did two patients who type for HLA-B13 have antibodies that react with all Bw4 antigens except HLA-B13? Transpl Immunol 2011; 25: 217-220.
– reference: 4) DeVos JM, Gaber AO, Knight RJ, et al. Donor-specific HLA-DQ antibodies may contribute to poor graft outcome after renal transplantation. Kidney Int 2012; 82: 598-604.
– reference: 16) Marrari M, Duquesnoy RJ. Why can sensitization by an HLA-DR2 mismatch lead to antibodies that react also with HLA-DR1? Hum Immunol 2009; 70: 403-409.
– reference: 12) Liapis H, Gaut JP, Klein C. Banff histopathological consensus criteria for preimplantation kidney biopsies. Am J Transplant 2017; 17: 140-150.
– reference: 13) Bjorkman PJ, Strominger JL, Wiley DC. Crystallization and X-ray diffraction studies on the histocompatibility antigens HLA-A2 and HLA-A28 from human cell membranes. J Mol Biol 1985; 186: 205-210.
– reference: 14) Saper MA, Bjorkman PJ, Wiley DC. Refined structure of the human histocompatibility antigen HLA-A2 at 2.6 A resolution. J Mol Biol 1991; 219: 277-319.
– reference: 17) Tambur AR, Buckingham M, McDonald L. Development of donor-specific and non-donor-specific HLA-DP antibodies post-transplant: the role of epitope sharing and epitope matching. Clin Transpl 2006; 32: 399-404.
– reference: 6) Ntokou IS, Iniotaki AG, Kontou EN, et al. Long-term follow up for anti-HLA donor specific antibodies postrenal transplantation: high immunogenicity of HLA class II graft molecules. Transpl Int 2011; 24: 1084-1093.
– reference: 10) El-Awar N, Jucaud V, Nguyen A. HLA epitopes: the targets of monoclonal and alloantibodies defined. J Immunol Res 2017; 2017: 1-16.
– reference: 20) Kosmoliaptsis V, Mallon DH, Chen Y. Alloantibody responses after renal transplant failure can be better predicted by donor-recipient HLA amino acid sequence and physicochemical disparities than conventional HLA matching. Am J Transplant 2016; 16: 2139-2147.
– reference: 18) Cai J, Terasaki PI, Mao Q, et al. Development of nondonor-specific HLA-DR antibodies in allograft recipients is associated with shared epitopes with mismatched donor DR antigens. Am J Transplant 2006; 6: 2947-2954.
– reference: 5) Willicombe M, Brookes P, Sergeant R, et al. De novo DQ donor-specific antibodies are associated with a significant risk of antibody-mediated rejection and transplant glomerulopathy. Transplantation 2012; 94: 172-177.
– reference: 21) Sapir-Pichhadze R, Tinckam K, Quach K. HLA-DR and -DQ eplet mismatches and transplant glomerulopathy: a nested case-control study. Am J Transplant 2015; 15: 137-148.
– reference: 19) Tambur AR, Rosati J, Roitberg S. Epitope analysis of HLA-DQ antigens: what does the antibody see? Transplantation 2014; 98: 157-166.
– reference: 2) Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant 2012; 12 : 1157-1167.
– reference: 22) El-Zoghby ZM, Stegall MD, Lager DJ, et al. Identifying specific causes of kidney allograft loss. Am J Transplant 2009; 9: 527-535.
– reference: 23) Wiebe C, Gibson IW, Blydt-Hansen TD, et al. Evolution and clinical pathologic correlations of de novo donor-specific HLA antibody post kidney transplant. Am J Transplant 2012; 12: 1157-1167.
– reference: 7) Wiebe C, Pochinco D, Blydt-Hansen TD, et al. Class II HLA epitope matching—a strategy to minimize de novo donor-specific antibody development and improve outcomes: class II epitope matching to minimize de novo DSA. Am J Transplant 2013; 13: 3114-3122.
SSID ssib002821803
ssib058493041
ssib000872161
ssib005879657
ssj0001032185
Score 2.2237651
Snippet 「I. はじめに」多くの要因が腎移植患者の長期生存に影響を及ぼしているが, 中でもヒト白血球抗原(Human Leukocyte Antigen: HLA)は特に重要である. HLAタイピング技術は進化し, 3次元の構成要素をより正確に決定可能になった. そして, HLA抗体検査の最新技術が普及し,...
SourceID medicalonline
jstage
SourceType Publisher
StartPage 293
SubjectTerms chronic antibody mediated rejection
dnDSA
graft function
HLA epitope mismatch
kidney transplantation
Title 腎臓移植におけるエピトープミスマッチ解析の意義について
URI https://www.jstage.jst.go.jp/article/jst/56/3/56_293/_article/-char/ja
http://mol.medicalonline.jp/library/journal/download?GoodsID=cl8isoke/2021/005603/012&name=0293-0303j
Volume 56
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 移植, 2021, Vol.56(3), pp.293-303
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpR1NaxUxcGnrRRBRVPymB3N8dfdls0luJq9biqJQaKG30N2Xgk_biu_14m27FUXxiwre6sFiFcG7KP6ZQNuf4SS7afdpD1UvYd7szGQyk5dMks1sEFzTmCx2I0JbYQbhW8zjvJURu3DVOtIhhi4S2dvIt-8k03PxzXkyPzK60XhraXWQTeSPDr1X8i9eBRz41d6S_QvP7gsFBMDgXyjBw1AeyccoZYgRxFIHUMQxSikSFEmJ0gQJiBMnUYohWkRC1gATNcAjB7QRkzUgmAMw4nENMI-RHf-IemCq5pLcY1LPhT0QWcVAH4GtPkDAQ69PajEMNJyyOssUCf67qiL2OntAJM1g-s_G-u6DUmIFWwGJkx3XlVhTUds-GTkMMIUHTNS2SmJPEjqzSkebWOtI3qQVxDV5vwJiSwHmBVY2JBdICJLUPxFObog4sUxgP4mbmy_tg20XZzVXkwU6SHQOczBUPAmmceI7iIvG4A4jZQvGQtqciaoU6_U_DjenleorknWEgl1WiEMmP-wO43r9wQRJJrDa5xrKJ57fZ3f7K_e0su1RNhVsiBWEKSoEegVjPsYQ07OEjwbH2pRG9j3ZWzPNmN3mexq6_ByxxlE-YZQ3jtIhwOU4rGNut_EZYmBwrxZ7G_jct6D_9ab2EBXCT5f84sRSdW5Z5Y9phICzp4KT9dptXFR_xNPBSG_hTDCz9_jl3pON3e3vO1svTPHFFM9M8casPTdrn0z51pRPTfnDlO9M-d6sfTPlpilLUxZ72x92Nl-b4uvO-qvdn58d45Yp1k3x8WwwN5XOdqZb9XdKWr12QniLLpIMonTMqNZYxzHRjEcs5zzPdZfDLMfyHNZNnEX5QjfLcpKznIVZV8c4gUk-x-eCseWVZX0-GKftbhy3IV7MFu0N9IxBQe0ShYDREr1wIUgqi6gHVTIaVQ8-CtCKJArbwjrS4-3lTdUDxhtDFlT1MNZXR-4PF_9fxKXguCWptjAvB2ODh6v6CgT1g-yq62S_AG29xh4
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E8%85%8E%E8%87%93%E7%A7%BB%E6%A4%8D%E3%81%AB%E3%81%8A%E3%81%91%E3%82%8B%E3%82%A8%E3%83%94%E3%83%88%E3%83%BC%E3%83%97%E3%83%9F%E3%82%B9%E3%83%9E%E3%83%83%E3%83%81%E8%A7%A3%E6%9E%90%E3%81%AE%E6%84%8F%E7%BE%A9%E3%81%AB%E3%81%A4%E3%81%84%E3%81%A6&rft.jtitle=%E7%A7%BB%E6%A4%8D&rft.au=%E5%8F%A4%E6%BE%A4%E7%BE%8E%E7%94%B1%E7%B4%80&rft.au=%E7%9F%B3%E7%94%B0%E8%8B%B1%E6%A8%B9&rft.au=%E7%A5%9E%E6%BE%A4%E5%A4%AA%E4%B8%80&rft.au=%E6%B5%B7%E4%B8%8A%E8%80%95%E5%B9%B3&rft.date=2021&rft.pub=%E6%97%A5%E6%9C%AC%E7%A7%BB%E6%A4%8D%E5%AD%A6%E4%BC%9A&rft.issn=0578-7947&rft.volume=56&rft.issue=3&rft.spage=293&rft.epage=303&rft_id=info:doi/10.11386%2Fjst.56.3_293&rft.externalDocID=cl8isoke_2021_005603_012_0293_03033932869
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0578-7947&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0578-7947&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0578-7947&client=summon