The Number of Different Unfoldings of Polyhedra

Given a polyhedron, the number of its unfolding is obtained by the Matrix-Tree Theorem. For example, a cube has 384 ways of unfolding (i.e., cutting edges). By omitting mutually isomorphic unfoldings, we have 11 essentially different (i.e., nonisomorphic) unfoldings. In this paper, we address how to...

Full description

Saved in:
Bibliographic Details
Published inAlgorithms and Computation pp. 623 - 633
Main Authors Horiyama, Takashi, Shoji, Wataru
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Given a polyhedron, the number of its unfolding is obtained by the Matrix-Tree Theorem. For example, a cube has 384 ways of unfolding (i.e., cutting edges). By omitting mutually isomorphic unfoldings, we have 11 essentially different (i.e., nonisomorphic) unfoldings. In this paper, we address how to count the number of nonisomorphic unfoldings for any (i.e., including nonconvex) polyhedron. By applying this technique, we also give the numbers of nonisomorphic unfoldings of all regular-faced convex polyhedra (i.e., Platonic solids, Archimedean solids, Johnson-Zalgaller solids, Archimedean prisms, and antiprisms), Catalan solids, bipyramids and trapezohedra. For example, while a truncated icosahedron (a Buckminsterfullerene, or a soccer ball fullerene) has 375,291,866,372,898,816, 000 (approximately 3.75 ×1020) ways of unfolding, it has 3,127,432,220, 939,473,920 (approximately 3.13 ×1018) nonisomorphic unfoldings. A truncated icosidodecahedron has 21,789,262,703,685,125,511,464,767,107, 171,876,864,000 (approximately 2.18 ×1040) ways of unfolding, and has 181,577,189,197,376, 045,928,994,520,239,942,164,480 (approximately 1.82 ×1038) nonisomorphic unfoldings.
Bibliography:A preliminary version was presented at EuroCG2013.
ISBN:9783642450297
3642450296
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-45030-3_58