TRPチャネル − アノクタミン1相互作用の生理機能

「はじめに」 体外環境の変化を知覚することは生存において重要であり, 特に侵害性刺激を感じることは時として生命維持に直結する不可欠な生理機能である. 末梢の自由神経終末には化学的および物理的刺激の多くを受容する分子機構があるため, 一次感覚神経は危機的環境の回避にも重要である. 侵害性熱刺激や酸刺激はカプサイシンの受容体であるTRPV1を活性化し, 且つそれらの同時刺激はTRPV1を相乗的に賦活化する. 一方, アノクタミン1(ANO1)は2008年に同定されたカルシウム活性化型陰イオンチャネルであり, 熱感受性を持つことが報告されている. TRPV1は一次感覚神経においてANO1と共局在して...

Full description

Saved in:
Bibliographic Details
Published inPAIN RESEARCH Vol. 33; no. 1; pp. 1 - 9
Main Authors 高山, 靖規, 柴崎, 貢志, 富永, 真琴, 歌, 大介, 古江, 秀昌
Format Journal Article
LanguageJapanese
Published 日本疼痛学会 30.03.2018
Subjects
Online AccessGet full text
ISSN0915-8588
2187-4697
DOI10.11154/pain.33.1

Cover

Abstract 「はじめに」 体外環境の変化を知覚することは生存において重要であり, 特に侵害性刺激を感じることは時として生命維持に直結する不可欠な生理機能である. 末梢の自由神経終末には化学的および物理的刺激の多くを受容する分子機構があるため, 一次感覚神経は危機的環境の回避にも重要である. 侵害性熱刺激や酸刺激はカプサイシンの受容体であるTRPV1を活性化し, 且つそれらの同時刺激はTRPV1を相乗的に賦活化する. 一方, アノクタミン1(ANO1)は2008年に同定されたカルシウム活性化型陰イオンチャネルであり, 熱感受性を持つことが報告されている. TRPV1は一次感覚神経においてANO1と共局在しており, これら二つのイオンチャネルの相互作用は神経興奮を増強する分子機構であることを筆者らは明らかにした. 本稿では, TRPV1-ANO1相互作用について, その発見に至った経緯も踏まえて論じたいと思う.
AbstractList 「はじめに」 体外環境の変化を知覚することは生存において重要であり, 特に侵害性刺激を感じることは時として生命維持に直結する不可欠な生理機能である. 末梢の自由神経終末には化学的および物理的刺激の多くを受容する分子機構があるため, 一次感覚神経は危機的環境の回避にも重要である. 侵害性熱刺激や酸刺激はカプサイシンの受容体であるTRPV1を活性化し, 且つそれらの同時刺激はTRPV1を相乗的に賦活化する. 一方, アノクタミン1(ANO1)は2008年に同定されたカルシウム活性化型陰イオンチャネルであり, 熱感受性を持つことが報告されている. TRPV1は一次感覚神経においてANO1と共局在しており, これら二つのイオンチャネルの相互作用は神経興奮を増強する分子機構であることを筆者らは明らかにした. 本稿では, TRPV1-ANO1相互作用について, その発見に至った経緯も踏まえて論じたいと思う.
Author 柴崎, 貢志
歌, 大介
富永, 真琴
高山, 靖規
古江, 秀昌
Author_xml – sequence: 1
  fullname: 高山, 靖規
  organization: 岡崎統合バイオサイエンスセンター(生理学研究所) 細胞生理研究部門
– sequence: 1
  fullname: 柴崎, 貢志
  organization: 群馬大学 分子細胞生物学講座
– sequence: 1
  fullname: 富永, 真琴
  organization: 岡崎統合バイオサイエンスセンター(生理学研究所) 細胞生理研究部門
– sequence: 1
  fullname: 歌, 大介
  organization: 富山大学大学院 医学薬学研究部 応用薬理学研究室
– sequence: 1
  fullname: 古江, 秀昌
  organization: 兵庫医科大学 神経生理部門
BookMark eNo1j89Kw0AYxBdRsNZefIK-QOr-ySa74EWLVqGgSO_LZptoQpqWpB48tgviRZHSm0JBL4qgBy8iFN_FLcbHMKV6mBnmO_w-Zg0sJ93EB2ADwRpCiNqbPRkmNUJqaAmUMGKuZTvcXQYlyBG1GGVsFVSyLPQg5owiDnEJ7LSOj4weGP1g9JXRz9Wvy1HVDO-NvjbDVzP8NHpi9BvKb99nH6PZ9C4fP5rBSz6e5DcX30-THz1dByuBjDO_8pdl0NrbbdX3reZh46C-3bQi7Ni2xRnHUHnQbbuuC5kMmOtIxQJbSo97mCrlYI-SgLSxL6VykFSBr5wggIxLT5EyaCywHb8dKhl3kzhMfBF1z9KkeCtUSOb7U4EhYgJCQiAqYq6FcQIpp9QuSFsLUpT15YkvemnYkem5kGk_VHHRC4wgRKCF_Z_VqUxFJMkvh-GBtw
ContentType Journal Article
Copyright 2018 日本疼痛学会
Copyright_xml – notice: 2018 日本疼痛学会
CorporateAuthor 富山大学大学院 医学薬学研究部 応用薬理学研究室
岡崎統合バイオサイエンスセンター (生理学研究所 細胞生理研究部門
兵庫医科大学 神経生理部門
群馬大学 分子細胞生物学講座
CorporateAuthor_xml – name: 群馬大学 分子細胞生物学講座
– name: 兵庫医科大学 神経生理部門
– name: 富山大学大学院 医学薬学研究部 応用薬理学研究室
– name: 岡崎統合バイオサイエンスセンター (生理学研究所 細胞生理研究部門
DOI 10.11154/pain.33.1
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 2187-4697
EndPage 9
ExternalDocumentID ci3painr_2018_003301_001_0001_00093059554
article_pain_33_1_33_1_article_char_ja
GroupedDBID ABJNI
ALMA_UNASSIGNED_HOLDINGS
JMI
JSF
JSH
KQ8
MOJWN
RJT
RZJ
ID FETCH-LOGICAL-j2644-98920cb07d77708af876ac8f4aab9b25cc62b53f3d2eaac61acfec6ff089abc3
ISSN 0915-8588
IngestDate Thu Jul 10 16:15:12 EDT 2025
Wed Sep 03 06:23:58 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2644-98920cb07d77708af876ac8f4aab9b25cc62b53f3d2eaac61acfec6ff089abc3
OpenAccessLink https://www.jstage.jst.go.jp/article/pain/33/1/33_1/_article/-char/ja
PageCount 9
ParticipantIDs medicalonline_journals_ci3painr_2018_003301_001_0001_00093059554
jstage_primary_article_pain_33_1_33_1_article_char_ja
PublicationCentury 2000
PublicationDate 2018/03/30
20180330
PublicationDateYYYYMMDD 2018-03-30
PublicationDate_xml – month: 03
  year: 2018
  text: 2018/03/30
  day: 30
PublicationDecade 2010
PublicationTitle PAIN RESEARCH
PublicationTitleAlternate PAIN RESEARCH
PublicationYear 2018
Publisher 日本疼痛学会
Publisher_xml – name: 日本疼痛学会
References 7) Dang, S., Feng, S., Tien, J., Peters, C.J., Bulkley, D., Lolicato, M., Zhao, J., Zuberbühler, K., Ye, W., Qi, L., Chen, T., Craik, C.S., Nung Jan, Y., Minor, D.L. Jr., Cheng, Y., Yeh Jan, L., Cryo-EM structures of the TMEM16A calcium-activated chloride channel, Nature, 552 (2017) 426-429.
17) Mao, S., Garzon-Muvdi, T., Di Fulvio, M., Chen, Y., Delpire, E., Alvarez, F.J., Alvarez-Leefmans, F.J., Molecular and functional expression of cation-chloride cotransporters in dorsal root ganglion neurons during postnatal maturation, J. Neurophysiol., 108 (2012) 834-852.
19) Mulier, M., Vriens, J., Voets, T., TRP channel pores and local calcium signals, Cell Calcium, 66 (2017) 19-24.
5) Cho, H., Yang, Y.D., Lee, J., Lee, B., Kim, T., Jang, Y., Back, S.K., Na, H.S., Harfe, B.D., Wang, F., Raouf, R., Wood, J.N., Oh, U., The calciumactivated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons, Nat. Neurosci., 15 (2012) 1015-1021.
4) Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D., The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature, 389 (1997) 816-824.
24) Shibasaki, K., Suzuki, M., Mizuno, A., Tominaga, M., Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4, J. Neurosci., 27(2007) 1566-1575.
32) Tien, J., Lee, H.Y., Minor, D.L., Jr., Jan, Y.N., Jan, L.Y., Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC), Proc. Natl. Acad. Sci. U.S.A., 110 (2013) 6352-6357.
1) Benfenati, V., Caprini, M., Dovizio, M., Mylonakou, M.N., Ferroni, S., Ottersen, O.P., Amiry-Moghaddam, M., An aquaporin-4 ⁄ transient receptor potential vanilloid 4 (AQP4⁄TRPV4) complex is essential for cell-volume control in astrocytes, Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 2563-2568.
23) Schroeder, B.C., Cheng, T., Jan, Y.N., Jan, L.Y., Expression cloning of TMEM16A as a calcium activated chloride channel subunit, Cell, 134 (2008) 1019-1029.
12) Iwamoto, N., Higashi, T., Furuse, M., Localization of angulin-1⁄LSR and tricellulin at tricellular contacts of brain and retinal endothelial cells in vivo, Cell Struct. Funct., 39 (2014) 1-8.
30) Takayama, Y., Furue, H., Tominaga, M., 4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1channel activities, Sci. Rep., 7 (2017) 43132.
20) Paulino, C., Neldner, Y., Lam, A.K., Kalienkova, V., Brunner, J.D., Schenck, S., Dutzler, R., Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A, Elife, 6 (2017).
16) Mandadi, S., Tominaga, T., Numazaki, M., Murayama, N., Saito, N., Armati, P.J., Roufogalis, B.D., Tominaga, M., Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCepsilon-mediated phosphorylation at S800, Pain, 123 (2006) 106-116.
35) Yang, Y.D., Cho, H., Koo, J.Y., Tak, M.H., Cho, Y., Shim, W.S., Park, S.P., Lee, J., Lee, B., Kim, B.M., Raouf, R., Shin, Y.K., Oh, U., TMEM16A confers receptor-activated calcium-dependent chloride conductance, Nature, 455 (2008) 1210-1215.
29) Takayama, Y., Uta, D., Furue, H., Tominaga, M.,Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons, Proc. Natl. Acad. Sci. U.S.A., 112 (2015) 5213-5218.
9) Furue, H., Katafuchi, T., Yoshimura, M., Sensory processing and functional reorganiza tion of sensory transmission under pathological conditions in the spinal dorsal horn, Neurosci. Res., 48 (2004) 361-368.
25) Speake, T., Freeman, L.J., Brown, P.D., Expression of aquaporin 1and aquaporin 4 water channels in rat choroid plexus, Biochim. Biophys. Acta, 1609 (2003) 80-86.
10) Gees, M., Colsoul, B., Nilius, B., The role of transient receptor potential cation channels in Ca2+ signaling, Cold Spring Harb. Perspect. Biol., 2 (2010) a003962.
27) Takaishi, M., Fujita, F., Uchida, K., Yamamoto, S.,Sawada Shimizu, M., Hatai Uotsu, C., Shimizu, M., Tominaga, M., 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1, Mol. Pain, 8 (2012) 86.
31) Tian, Y., Schreiber, R., Kunzelmann, K., Anoctamins are a family of Ca2+-activated Cl channels, J. Cell Sci., 125 (2012) 4991-4998.
13) Jiang, T., Yu, K., Hartzell, H.C., Tajkhorshid, E., Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase, Elife, 6 (2017).
22) Schnizler, K., Shutov, L.P., Van Kanegan, M.J., Merrill, M.A., Nichols, B., McKnight, G.S., Strack, S., Hell, J.W., Usachev, Y.M., Protein kinase A anchoring via AKAP150 is essential for TRPV1 modulation by forskolin and prostaglandin E2 in mouse sensory neurons, J. Neurosci., 28 (2008) 4904-4917.
18) Medvedeva, Y.V., Kim, M.S., Usachev, Y.M., Mechanisms of prolonged presynaptic Ca2+ sig naling and glutamate release induced by TRPV1 activation in rat sensory neurons, J. Neurosci., 28 (2008) 5295-5311.
8) Duran, C., Qu, Z., Osunkoya, A.O., Cui, Y., Hartzell, H.C., ANOs 3-7 in the anoctamin ⁄ Tmem16 Cl- channel family are intracellular proteins, Am. J. Physiol. Cell Physiol., 302 (2012) C482-493.
2) Brunner, J.D., Lim, N.K., Schenck, S., Duerst, A.,Dutzler, R., X-ray structure of a calcium-acti vated TMEM16 lipid scramblase, Nature, 516 (2014) 207-212.
6) Crutzen, R., Virreira, M., Markadieu, N., Shlyonsky, V., Sener, A., Malaisse, W.J., Beauwens, R., Boom, A., Golstein, P.E., Anoctamin 1 (Ano1) is required for glucose-induced membrane potential oscillations and insulin secretion by murine beta-cells, Pflugers Arch., 468 (2016) 573-591.
34) Xu, Z., Lefevre, G.M., Gavrilova, O., Foster St Claire, M.B., Riddick, G., Felsenfeld, G., Mapping of long-range INS promoter interactions reveals a role for calcium-activated chloride channel ANO1in insulin secretion, Proc. Natl. Acad. Sci. U.S.A., 111 (2014) 16760-16765.
28) Takayama, Y., Shibasaki, K., Suzuki, Y., Yamanaka, A., Tominaga, M., Modulation of water efflux through functional interaction between TRPV4 and TMEM16A ⁄ anoctamin 1, FASEB J., 28 (2014) 2238-2248.
11) Henningsen, G.M., Salomon, R.A., Yu, K.O., Lopez, I., Roberts, J., Serve, M.P., Metabolism of nephrotoxic isopropylcyclohexane in male Fischer 344 rats, J. Toxicol. Environ. Health, 24 (1988) 19-25.
26) Suzuki, J., Fujii, T., Imao, T., Ishihara, K., Kuba, H., Nagata, S., Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members, J. Biol. Chem., 288 (2013) 13305-13316.
21) Paulino, C., Kalienkova, V., Lam, A.K.M.,Neldner, Y., Dutzler, R., Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM, Nature, 552 (2017) 421-425.
15) Lim, N.K., Lam, A.K., Dutzler, R., Independent activation of ion conduction pores in the dou ble-barreled calcium-activated chloride channel TMEM16A, J. Gen. Physiol., 148 (2016) 375- 392.
3) Caputo, A., Caci, E., Ferrera, L., Pedemonte, N.,Barsanti, C., Sondo, E., Pfeffer, U., Ravazzolo, R., Zegarra-Moran, O., Galietta, L. J., TMEM16A, a membrane protein associated with calciumdependent chloride channel activity, Science, 322 (2008) 590-594.
14) Jin, X., Shah, S., Du, X., Zhang, H., Gamper, N.,Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals, J. Physiol.,594 (2016) 19-30.
33) Uta, D., Furue, H., Pickering, A.E., Rashid, M.H.,Mizuguchi-Takase, H., Katafuchi, T., Imoto, K., Yoshimura, M., TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord, Eur. J. Neurosci., 31 (2010) 1960-1973.
References_xml – reference: 1) Benfenati, V., Caprini, M., Dovizio, M., Mylonakou, M.N., Ferroni, S., Ottersen, O.P., Amiry-Moghaddam, M., An aquaporin-4 ⁄ transient receptor potential vanilloid 4 (AQP4⁄TRPV4) complex is essential for cell-volume control in astrocytes, Proc. Natl. Acad. Sci. U.S.A., 108 (2011) 2563-2568.
– reference: 28) Takayama, Y., Shibasaki, K., Suzuki, Y., Yamanaka, A., Tominaga, M., Modulation of water efflux through functional interaction between TRPV4 and TMEM16A ⁄ anoctamin 1, FASEB J., 28 (2014) 2238-2248.
– reference: 23) Schroeder, B.C., Cheng, T., Jan, Y.N., Jan, L.Y., Expression cloning of TMEM16A as a calcium activated chloride channel subunit, Cell, 134 (2008) 1019-1029.
– reference: 34) Xu, Z., Lefevre, G.M., Gavrilova, O., Foster St Claire, M.B., Riddick, G., Felsenfeld, G., Mapping of long-range INS promoter interactions reveals a role for calcium-activated chloride channel ANO1in insulin secretion, Proc. Natl. Acad. Sci. U.S.A., 111 (2014) 16760-16765.
– reference: 16) Mandadi, S., Tominaga, T., Numazaki, M., Murayama, N., Saito, N., Armati, P.J., Roufogalis, B.D., Tominaga, M., Increased sensitivity of desensitized TRPV1 by PMA occurs through PKCepsilon-mediated phosphorylation at S800, Pain, 123 (2006) 106-116.
– reference: 33) Uta, D., Furue, H., Pickering, A.E., Rashid, M.H.,Mizuguchi-Takase, H., Katafuchi, T., Imoto, K., Yoshimura, M., TRPA1-expressing primary afferents synapse with a morphologically identified subclass of substantia gelatinosa neurons in the adult rat spinal cord, Eur. J. Neurosci., 31 (2010) 1960-1973.
– reference: 14) Jin, X., Shah, S., Du, X., Zhang, H., Gamper, N.,Activation of Ca(2+) -activated Cl(-) channel ANO1 by localized Ca(2+) signals, J. Physiol.,594 (2016) 19-30.
– reference: 31) Tian, Y., Schreiber, R., Kunzelmann, K., Anoctamins are a family of Ca2+-activated Cl channels, J. Cell Sci., 125 (2012) 4991-4998.
– reference: 3) Caputo, A., Caci, E., Ferrera, L., Pedemonte, N.,Barsanti, C., Sondo, E., Pfeffer, U., Ravazzolo, R., Zegarra-Moran, O., Galietta, L. J., TMEM16A, a membrane protein associated with calciumdependent chloride channel activity, Science, 322 (2008) 590-594.
– reference: 20) Paulino, C., Neldner, Y., Lam, A.K., Kalienkova, V., Brunner, J.D., Schenck, S., Dutzler, R., Structural basis for anion conduction in the calcium-activated chloride channel TMEM16A, Elife, 6 (2017).
– reference: 26) Suzuki, J., Fujii, T., Imao, T., Ishihara, K., Kuba, H., Nagata, S., Calcium-dependent phospholipid scramblase activity of TMEM16 protein family members, J. Biol. Chem., 288 (2013) 13305-13316.
– reference: 17) Mao, S., Garzon-Muvdi, T., Di Fulvio, M., Chen, Y., Delpire, E., Alvarez, F.J., Alvarez-Leefmans, F.J., Molecular and functional expression of cation-chloride cotransporters in dorsal root ganglion neurons during postnatal maturation, J. Neurophysiol., 108 (2012) 834-852.
– reference: 9) Furue, H., Katafuchi, T., Yoshimura, M., Sensory processing and functional reorganiza tion of sensory transmission under pathological conditions in the spinal dorsal horn, Neurosci. Res., 48 (2004) 361-368.
– reference: 19) Mulier, M., Vriens, J., Voets, T., TRP channel pores and local calcium signals, Cell Calcium, 66 (2017) 19-24.
– reference: 6) Crutzen, R., Virreira, M., Markadieu, N., Shlyonsky, V., Sener, A., Malaisse, W.J., Beauwens, R., Boom, A., Golstein, P.E., Anoctamin 1 (Ano1) is required for glucose-induced membrane potential oscillations and insulin secretion by murine beta-cells, Pflugers Arch., 468 (2016) 573-591.
– reference: 12) Iwamoto, N., Higashi, T., Furuse, M., Localization of angulin-1⁄LSR and tricellulin at tricellular contacts of brain and retinal endothelial cells in vivo, Cell Struct. Funct., 39 (2014) 1-8.
– reference: 24) Shibasaki, K., Suzuki, M., Mizuno, A., Tominaga, M., Effects of body temperature on neural activity in the hippocampus: regulation of resting membrane potentials by transient receptor potential vanilloid 4, J. Neurosci., 27(2007) 1566-1575.
– reference: 32) Tien, J., Lee, H.Y., Minor, D.L., Jr., Jan, Y.N., Jan, L.Y., Identification of a dimerization domain in the TMEM16A calcium-activated chloride channel (CaCC), Proc. Natl. Acad. Sci. U.S.A., 110 (2013) 6352-6357.
– reference: 15) Lim, N.K., Lam, A.K., Dutzler, R., Independent activation of ion conduction pores in the dou ble-barreled calcium-activated chloride channel TMEM16A, J. Gen. Physiol., 148 (2016) 375- 392.
– reference: 13) Jiang, T., Yu, K., Hartzell, H.C., Tajkhorshid, E., Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase, Elife, 6 (2017).
– reference: 2) Brunner, J.D., Lim, N.K., Schenck, S., Duerst, A.,Dutzler, R., X-ray structure of a calcium-acti vated TMEM16 lipid scramblase, Nature, 516 (2014) 207-212.
– reference: 5) Cho, H., Yang, Y.D., Lee, J., Lee, B., Kim, T., Jang, Y., Back, S.K., Na, H.S., Harfe, B.D., Wang, F., Raouf, R., Wood, J.N., Oh, U., The calciumactivated chloride channel anoctamin 1 acts as a heat sensor in nociceptive neurons, Nat. Neurosci., 15 (2012) 1015-1021.
– reference: 4) Caterina, M.J., Schumacher, M.A., Tominaga, M., Rosen, T.A., Levine, J.D., Julius, D., The capsaicin receptor: a heat-activated ion channel in the pain pathway, Nature, 389 (1997) 816-824.
– reference: 7) Dang, S., Feng, S., Tien, J., Peters, C.J., Bulkley, D., Lolicato, M., Zhao, J., Zuberbühler, K., Ye, W., Qi, L., Chen, T., Craik, C.S., Nung Jan, Y., Minor, D.L. Jr., Cheng, Y., Yeh Jan, L., Cryo-EM structures of the TMEM16A calcium-activated chloride channel, Nature, 552 (2017) 426-429.
– reference: 18) Medvedeva, Y.V., Kim, M.S., Usachev, Y.M., Mechanisms of prolonged presynaptic Ca2+ sig naling and glutamate release induced by TRPV1 activation in rat sensory neurons, J. Neurosci., 28 (2008) 5295-5311.
– reference: 27) Takaishi, M., Fujita, F., Uchida, K., Yamamoto, S.,Sawada Shimizu, M., Hatai Uotsu, C., Shimizu, M., Tominaga, M., 1,8-cineole, a TRPM8 agonist, is a novel natural antagonist of human TRPA1, Mol. Pain, 8 (2012) 86.
– reference: 29) Takayama, Y., Uta, D., Furue, H., Tominaga, M.,Pain-enhancing mechanism through interaction between TRPV1 and anoctamin 1 in sensory neurons, Proc. Natl. Acad. Sci. U.S.A., 112 (2015) 5213-5218.
– reference: 35) Yang, Y.D., Cho, H., Koo, J.Y., Tak, M.H., Cho, Y., Shim, W.S., Park, S.P., Lee, J., Lee, B., Kim, B.M., Raouf, R., Shin, Y.K., Oh, U., TMEM16A confers receptor-activated calcium-dependent chloride conductance, Nature, 455 (2008) 1210-1215.
– reference: 21) Paulino, C., Kalienkova, V., Lam, A.K.M.,Neldner, Y., Dutzler, R., Activation mechanism of the calcium-activated chloride channel TMEM16A revealed by cryo-EM, Nature, 552 (2017) 421-425.
– reference: 10) Gees, M., Colsoul, B., Nilius, B., The role of transient receptor potential cation channels in Ca2+ signaling, Cold Spring Harb. Perspect. Biol., 2 (2010) a003962.
– reference: 11) Henningsen, G.M., Salomon, R.A., Yu, K.O., Lopez, I., Roberts, J., Serve, M.P., Metabolism of nephrotoxic isopropylcyclohexane in male Fischer 344 rats, J. Toxicol. Environ. Health, 24 (1988) 19-25.
– reference: 8) Duran, C., Qu, Z., Osunkoya, A.O., Cui, Y., Hartzell, H.C., ANOs 3-7 in the anoctamin ⁄ Tmem16 Cl- channel family are intracellular proteins, Am. J. Physiol. Cell Physiol., 302 (2012) C482-493.
– reference: 30) Takayama, Y., Furue, H., Tominaga, M., 4-isopropylcyclohexanol has potential analgesic effects through the inhibition of anoctamin 1, TRPV1 and TRPA1channel activities, Sci. Rep., 7 (2017) 43132.
– reference: 25) Speake, T., Freeman, L.J., Brown, P.D., Expression of aquaporin 1and aquaporin 4 water channels in rat choroid plexus, Biochim. Biophys. Acta, 1609 (2003) 80-86.
– reference: 22) Schnizler, K., Shutov, L.P., Van Kanegan, M.J., Merrill, M.A., Nichols, B., McKnight, G.S., Strack, S., Hell, J.W., Usachev, Y.M., Protein kinase A anchoring via AKAP150 is essential for TRPV1 modulation by forskolin and prostaglandin E2 in mouse sensory neurons, J. Neurosci., 28 (2008) 4904-4917.
SSID ssib029851902
ssj0003220563
ssib003996098
ssib058494057
Score 1.7238462
Snippet 「はじめに」 体外環境の変化を知覚することは生存において重要であり, 特に侵害性刺激を感じることは時として生命維持に直結する不可欠な生理機能である. 末梢の自由神経終末には化学的および物理的刺激の多くを受容する分子機構があるため, 一次感覚神経は危機的環境の回避にも重要である....
SourceID medicalonline
jstage
SourceType Publisher
StartPage 1
SubjectTerms Acute pain
Anoctamin 1
Isopropylcyclohexanol
TRP channel
Title TRPチャネル − アノクタミン1相互作用の生理機能
URI https://www.jstage.jst.go.jp/article/pain/33/1/33_1/_article/-char/ja
http://mol.medicalonline.jp/library/journal/download?GoodsID=ci3painr/2018/003301/001&name=0001-0009j
Volume 33
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX PAIN RESEARCH, 2018/03/30, Vol.33(1), pp.1-9
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9VAEA9tvQgiior1ix7cY2qSTTa7F3HzPqiKpUqF3sJmXwJ94FNqe_HWBrwpIr0pFPSiCHrwIkLxj0nx-Wc4s5u8l6JCVQjLMLv7y85ONjv7Nes4V_Oc8jhm2mVeJtyQFp7L2UC7caSo9nJG_RDPO99ZZkv3w1tr0drMLG_tWtrazBb1k9-eK_kXrQIP9IqnZP9CsxNQYAAN-oUQNAzh0XR8b4X0KOHw-DUhacPpNpzENVRAZNDE9RpOvyaSfh0lGiKhABkTkZCEk15IEklEYIguER0TFRLJTWqfyF7NwfxAeIQz0mNECsPhBrHbtoRX5M3lX5arSE9AeYkA2IgkPj7AEfBGhiCSEd6fpmWInYQmbWiE4iSxYkYokYinaSPISWSImQDUllLGuM8DYaB8nTau7AIDM0EOSIVSJ4Qn7SkS354Z9CYftQEC0MgQHSJtJcH7LGHqEiG7KAdCdoiQ7alSP3J5ZK8fbHoN677jUOuwXYDfsiXEHzqpKDRXK6-PFild9Kdd8WSDpF6nGL2RojjovxX-w7j90OwVSM08FNjFYArOOseCODYbFG7fbQ2c0enOdCAdCDCsxdTRG1idIvTq9W60WSiet7bXDjbC1r58sbDXJkUFO20IoxZ0R3HigV1JtB5dWkbZ6innZD2aWpC2aZx2ZobqjHMdmkVVblfl26p8VpUf3GrnTVU-r3Y-VTvfqnKvKj_741dfDr6-PNh_Pd59V21_HO_ujV88_f5-70e5f9ZZ7fdWO0tufU2IO0Rr3hVcBJ7OvHgQx7HHVQEdvNK8CJXKRBZEWrMgi2hBB0GulGa-0kWuWVF4XKhM03PO3OjhKD_vLAju5RlVOWeeH-aKZvlgUGiuaa6jQNFw3oms9Okj6womrZt-ihWUUpr6NmjYeHIyHap558ahykrrf8jj9Mh6vvD_EBed49PGccmZ29zYyi-DRb2ZXTEfz0_DpqUI
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=TRP%E3%83%81%E3%83%A3%E3%83%8D%E3%83%AB-%E3%82%A2%E3%83%8E%E3%82%AF%E3%82%BF%E3%83%9F%E3%83%B31%E7%9B%B8%E4%BA%92%E4%BD%9C%E7%94%A8%E3%81%AE%E7%94%9F%E7%90%86%E6%A9%9F%E8%83%BD&rft.jtitle=PAIN+RESEARCH&rft.au=%E9%AB%98%E5%B1%B1%E9%9D%96%E8%A6%8F&rft.au=%E6%9F%B4%E5%B4%8E%E8%B2%A2%E5%BF%97&rft.au=%E5%8F%A4%E6%B1%9F%E7%A7%80%E6%98%8C&rft.au=%E6%AD%8C%E5%A4%A7%E4%BB%8B&rft.date=2018-03-30&rft.pub=%E6%97%A5%E6%9C%AC%E7%96%BC%E7%97%9B%E5%AD%A6%E4%BC%9A&rft.issn=0915-8588&rft.volume=33&rft.issue=1&rft.spage=1&rft.epage=9&rft_id=info:doi/10.11154%2Fpain.33.1&rft.externalDocID=ci3painr_2018_003301_001_0001_00093059554
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0915-8588&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0915-8588&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0915-8588&client=summon