On Communication Complexity of Secure Message Transmission in Directed Networks

We re-visit the problem of perfectly secure message transmission (PSMT) in a directed network under the presence of a threshold adaptive Byzantine adversary, having unbounded computing power. Specifically, we derive the lower bounds on communication complexity of (a) two phase PSMT protocols and (b)...

Full description

Saved in:
Bibliographic Details
Published inDistributed Computing and Networking pp. 42 - 53
Main Authors Patra, Arpita, Choudhary, Ashish, Rangan, C. Pandu
Format Book Chapter
LanguageEnglish
Published Berlin, Heidelberg Springer Berlin Heidelberg
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:We re-visit the problem of perfectly secure message transmission (PSMT) in a directed network under the presence of a threshold adaptive Byzantine adversary, having unbounded computing power. Specifically, we derive the lower bounds on communication complexity of (a) two phase PSMT protocols and (b) three or more phase PSMT protocols in directed networks. Moreover, we show that our lower bounds are asymptotically tight, by designing communication optimal PSMT protocols in directed networks, which are first of their kind. We re-visit the problem of perfectly reliable message transmission (PRMT) as well. Any PRMT protocol that sends a message containing ℓ field elements by communicating \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\cal O}(\ell)$\end{document} field elements, is referred as communication optimal PRMT or PRMT with constant factor overhead. Here, we characterize the class of directed networks over which communication optimal PRMT or PRMT with constant factor overhead is possible. Moreover, we design a communication optimal PRMT over a directed network that satisfies the conditions stated in our characterization.
ISBN:9783642113215
3642113214
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-642-11322-2_9