In situ assembly of CQDs/Bi2WO6 for highly efficient photocatalytic degradation of VOCs under visible light
A series of carbon quantum dot (CQD)/Bi2WO6 hybrid materials were synthesized via a facile in situ hydrothermal method, where the CQDs were prepared using different carbon sources. As demonstrated by multiple techniques, including XRD, SEM, TEM, XPS, BET, UV-vis, FT-IR, PL and TPR, the visible light...
Saved in:
Published in | New journal of chemistry Vol. 44; no. 8; pp. 3455 - 3462 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
28.02.2020
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A series of carbon quantum dot (CQD)/Bi2WO6 hybrid materials were synthesized via a facile in situ hydrothermal method, where the CQDs were prepared using different carbon sources. As demonstrated by multiple techniques, including XRD, SEM, TEM, XPS, BET, UV-vis, FT-IR, PL and TPR, the visible light absorption wavelength red-shifted, the oxidation ability was enhanced, and the recombination probability of electron–hole pairs was inhibited by incorporating the CQDs in Bi2WO6. Moreover, different carbon source-derived CQD/Bi2WO6 materials exhibited different optical and electronic properties. The CQD/Bi2WO6 materials exhibited excellent activity in the photocatalytic degradation of VOCs under visible light irradiation, among which the CQDs/Bi2WO6 derived from chitosan demonstrated the best activity with 96.9% degradation for gaseous toluene and 97.1% for gaseous formaldehyde within only 120 min. Furthermore, the CQDs/Bi2WO6 showed high stability and reusability. |
---|---|
ISSN: | 1144-0546 1369-9261 |
DOI: | 10.1039/c9nj04957f |