Scalable On-Board Multi-GPU Simulation of Long-Range Molecular Dynamics

Molecular dynamics simulations allow us to study the behavior of complex biomolecular systems by modeling the pairwise interaction forces between all atoms. Molecular systems are subject to slowly decaying electrostatic potentials, which turn molecular dynamics into an n-body problem. In this paper,...

Full description

Saved in:
Bibliographic Details
Published inEuro-Par 2014 Parallel Processing pp. 752 - 763
Main Authors Novalbos, Marcos, González, Jaime, Otaduy, Miguel A., Martinez-Benito, Roberto, Sanchez, Alberto
Format Book Chapter
LanguageEnglish
Published Cham Springer International Publishing 2014
SeriesLecture Notes in Computer Science
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Molecular dynamics simulations allow us to study the behavior of complex biomolecular systems by modeling the pairwise interaction forces between all atoms. Molecular systems are subject to slowly decaying electrostatic potentials, which turn molecular dynamics into an n-body problem. In this paper, we present a parallel and scalable solution to compute long-range molecular forces, based on the multilevel summation method (MSM). We first demonstrate an optimization of MSM that replaces 3D convolutions with FFTs, and we achieve a single-GPU performance comparable to the particle mesh Ewald (PME) method, the de facto standard for long-range molecular force computation. But most importantly, we propose a distributed MSM that avoids the scalability difficulties of PME. Our distributed solution is based on a spatial partitioning of the MSM multilevel grid, together with massively parallel algorithms for interface update and synchronization. We demonstrate the scalability of our approach on an on-board multi-GPU platform.
ISBN:3319098721
9783319098722
ISSN:0302-9743
1611-3349
DOI:10.1007/978-3-319-09873-9_63