ベイズ推定を用いたMIMOSYSの精度改善の検討
ストレス過多な現代において,メンタルヘルス不調の早期発見が課題となっている.これまで著者らは音声から人のメンタルヘルス状態を推定する技術MIMOSYS(Mind Monitoring System)を開発してきた.この技術には非侵襲であり手軽に行えるという利点がある.一方でMIMOSYSの短期指標である元気圧にはメンタルヘルス状態の推定の特異度が低いという性質があり,その改善のために14日間の元気圧の平均値と変動から計算される心の活量値という指標を開発した経緯がある.本研究ではMIMOSYSにベイズ統計学の考え方を組み合わせ,短期間の音声データからメンタルヘルス状態を推定できる可能性を検討した...
Saved in:
Published in | 生体医工学 Vol. Annual58; no. Abstract; p. 230 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | Japanese |
Published |
公益社団法人 日本生体医工学会
2020
|
Online Access | Get full text |
ISSN | 1347-443X 1881-4379 |
DOI | 10.11239/jsmbe.Annual58.230 |
Cover
Loading…
Summary: | ストレス過多な現代において,メンタルヘルス不調の早期発見が課題となっている.これまで著者らは音声から人のメンタルヘルス状態を推定する技術MIMOSYS(Mind Monitoring System)を開発してきた.この技術には非侵襲であり手軽に行えるという利点がある.一方でMIMOSYSの短期指標である元気圧にはメンタルヘルス状態の推定の特異度が低いという性質があり,その改善のために14日間の元気圧の平均値と変動から計算される心の活量値という指標を開発した経緯がある.本研究ではMIMOSYSにベイズ統計学の考え方を組み合わせ,短期間の音声データからメンタルヘルス状態を推定できる可能性を検討した.防衛医科大学校病院において大うつ病性障害として診断された患者に対し,ハミルトンうつ病尺度(HAM-D)による重症度の確認と,定型文の読み上げという形で音声データ収集を行った.その後HAM-Dのスコアから被験者を軽症者と重症者に分類し,それぞれの音声から発話ごとの元気圧の尤度分布を求めた.発話ごとの尤度分布とベイズの定理を用いて被験者の発話ごとの元気圧から事後確率を計算することで重症者である確率を推定した.その結果,元気圧ではAUC 0.66だった軽症者と重症者の分離能力が0.89へと向上した.この結果から短期間の音声データからも高い精度でうつ病患者の軽症者と重症者を分離することができ,従来の指標よりメンタル不調者を早期発見できる可能性が示唆された. |
---|---|
ISSN: | 1347-443X 1881-4379 |
DOI: | 10.11239/jsmbe.Annual58.230 |