IODP Expedition 323ベーリング海掘削航海の成果と今後の展望 全球水循環・気候変動に関わる顕著な役割
IODP Exp 323ベーリング海航海は,過去500万年間の速い堆積速度の堆積物を精査することで,北半球氷床,中期更新世変遷期(MPT),海氷,中深層水とラミナ堆積物,ベーリング海峡ゲートウェイの発達史等を解明することを目的とした.掘削コアリングは,アリューシャン海盆周辺の深度分布を含む計7サイトで成功裏に実施され,高品質のAPCを主体とする総計660本,5,741m長のコアを取得した.最大到達年代は,バウワーズ海嶺で500万年前,ベーリング斜面域で250万年前で連続的な堆積物を得た.アラスカ氷床融解の当海域への影響は,430万年前に始まり,330から280-250万年前までに強化された.バ...
Saved in:
Published in | Chishitsugaku zasshi Vol. 124; no. 1; pp. 17 - 34 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | Japanese |
Published |
Tokyo
一般社団法人 日本地質学会
01.01.2018
Japan Science and Technology Agency |
Subjects | |
Online Access | Get full text |
ISSN | 0016-7630 1349-9963 |
DOI | 10.5575/geosoc.2017.0066 |
Cover
Loading…
Abstract | IODP Exp 323ベーリング海航海は,過去500万年間の速い堆積速度の堆積物を精査することで,北半球氷床,中期更新世変遷期(MPT),海氷,中深層水とラミナ堆積物,ベーリング海峡ゲートウェイの発達史等を解明することを目的とした.掘削コアリングは,アリューシャン海盆周辺の深度分布を含む計7サイトで成功裏に実施され,高品質のAPCを主体とする総計660本,5,741m長のコアを取得した.最大到達年代は,バウワーズ海嶺で500万年前,ベーリング斜面域で250万年前で連続的な堆積物を得た.アラスカ氷床融解の当海域への影響は,430万年前に始まり,330から280-250万年前までに強化された.バウワーズ海嶺付近での本格的な海氷発達は,海氷由来化石種の多産イベントにより270万年前と220-200万年前に見られ,MPT以降では北太平洋中層水形成に影響を与えた.強い氷期におけるベーリング海峡閉鎖時には,ベーリング海で北太平洋中層水形成が強まった. |
---|---|
AbstractList | Our understanding of the paleoceanography of the Bering Sea has been considerably advanced by IODP Expedition 323. The expedition aimed to create a high-resolution record of changes in paleoceanography since the Pliocene in a relatively high-latitude region of the North Pacific, subject to polar amplification. The expedition recovered 660 cores, mainly high-quality Advanced Piston Cores (APC), with a total length of 5741 m of continuous cores from seven sites distributed around the perimeter of the Aleutian Basin, including the Bowers Ridge, the Bering Slope edge, and the Umnak Plateau. These cores are crucial to our understanding of sea-ice distribution, productivity, laminated sediments, input of detrital materials, the formation of the North Pacific Intermediate Water mass, the Pacific water mass entry, the history of the Arctic gateway, and the enigma of the intensification of the Northern Hemisphere Glaciation and the mid-Pleistocene Transition. The maximum ages of the cores are ~5 Ma at the Bowers Ridge sites and 2.5 Ma at the Bering Slope sites. Meltwater from the Alaskan Ice Sheet has influenced the Bering Sea since 4.3 Ma, increasing in influence at 3.3 and 2.8-2.5 Ma. The significant development of sea-ice formation was identified at two sites on the Bowers Ridge at 2.7 and 2.2-2.0 Ma, based on analysis of sea-ice related diatoms and silicoflagellates. Such sea-ice formation affected the extent of the North Pacific Intermediate Water in the Bering Sea, which was strengthened during cold intervals such as when the Bering Strait closed due to falling sea level. IODP Exp 323ベーリング海航海は,過去500万年間の速い堆積速度の堆積物を精査することで,北半球氷床,中期更新世変遷期(MPT),海氷,中深層水とラミナ堆積物,ベーリング海峡ゲートウェイの発達史等を解明することを目的とした.掘削コアリングは,アリューシャン海盆周辺の深度分布を含む計7サイトで成功裏に実施され,高品質のAPCを主体とする総計660本,5,741m長のコアを取得した.最大到達年代は,バウワーズ海嶺で500万年前,ベーリング斜面域で250万年前で連続的な堆積物を得た.アラスカ氷床融解の当海域への影響は,430万年前に始まり,330から280-250万年前までに強化された.バウワーズ海嶺付近での本格的な海氷発達は,海氷由来化石種の多産イベントにより270万年前と220-200万年前に見られ,MPT以降では北太平洋中層水形成に影響を与えた.強い氷期におけるベーリング海峡閉鎖時には,ベーリング海で北太平洋中層水形成が強まった. |
Author | 朝日, 博史 高橋, 孝三 小野寺, 丈尚太郎 岡崎, 裕典 |
Author_xml | – sequence: 1 fullname: 小野寺, 丈尚太郎 organization: 海洋研究開発機構 – sequence: 1 fullname: 岡崎, 裕典 organization: 九州大学 – sequence: 1 fullname: 高橋, 孝三 organization: 北星学園大学 – sequence: 1 fullname: 朝日, 博史 organization: 韓国極地研究所 |
BookMark | eNo9kD9Lw0AYhw-pYK3dHQvOqfcvd80otdpCoQ46H9fcpabUpCYp6Fiz1CLiIigWZ-kgioiD4peJDX4MUysu7_vy8vD7wbMKcp7vaQDWESybJjc3O9oPfbuMIeJlCBlbAnlEqGVYFiM5kIcQMYMzAldAMQzdNoTQIoxwnAfNRmt7r1Q76WvlRq7vlQgmSXybxB9JPE3il-TsKX19Sy9vZufj79E0u5PhYzq6Su8nyfDh6308-7zIPrPn63RytwaWHdkLdfFvF8DBTm2_Wjeard1GdatpdDFG3KCOViZnzKY2q7QtprBDpKkI446ikptUcQfaGQoVJ1Ips207Fq5Q6ChtY-2QAthY5PYD_3igw0h0_UHgZZUCQ8qxSQjiGVVfUN0wkh0t-oF7JINTIYPItXtaLKQJhKlAv3OuT8z1_SP2oQxEV5IfpGZ_Gg |
ContentType | Journal Article |
Copyright | 2018 日本地質学会 Copyright Japan Science and Technology Agency 2018 |
Copyright_xml | – notice: 2018 日本地質学会 – notice: Copyright Japan Science and Technology Agency 2018 |
DBID | F1W H96 L.G |
DOI | 10.5575/geosoc.2017.0066 |
DatabaseName | ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DatabaseTitle | Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional ASFA: Aquatic Sciences and Fisheries Abstracts |
DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geology |
EISSN | 1349-9963 |
EndPage | 34 |
ExternalDocumentID | article_geosoc_124_1_124_2017_0066_article_char_ja |
GeographicLocations | Bering Sea |
GeographicLocations_xml | – name: Bering Sea |
GroupedDBID | 29B 2WC 5GY ALMA_UNASSIGNED_HOLDINGS E3Z JSF KQ8 OK1 OVT P2P RJT RNS XSB ~02 F1W H96 L.G |
ID | FETCH-LOGICAL-j2217-4fed5766c4c68b96d2f3a5d367fd4a754d7f0c2210d73add5bcf92840fdec2ef3 |
ISSN | 0016-7630 |
IngestDate | Mon Jun 30 11:20:46 EDT 2025 Wed Sep 03 06:31:08 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | false |
IsScholarly | true |
Issue | 1 |
Language | Japanese |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-j2217-4fed5766c4c68b96d2f3a5d367fd4a754d7f0c2210d73add5bcf92840fdec2ef3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.jstage.jst.go.jp/article/geosoc/124/1/124_2017.0066/_article/-char/ja |
PQID | 2047253317 |
PQPubID | 2029105 |
PageCount | 18 |
ParticipantIDs | proquest_journals_2047253317 jstage_primary_article_geosoc_124_1_124_2017_0066_article_char_ja |
PublicationCentury | 2000 |
PublicationDate | 20180101 |
PublicationDateYYYYMMDD | 2018-01-01 |
PublicationDate_xml | – month: 01 year: 2018 text: 20180101 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Tokyo |
PublicationPlace_xml | – name: Tokyo |
PublicationTitle | Chishitsugaku zasshi |
PublicationTitleAlternate | 地質雑 |
PublicationYear | 2018 |
Publisher | 一般社団法人 日本地質学会 Japan Science and Technology Agency |
Publisher_xml | – name: 一般社団法人 日本地質学会 – name: Japan Science and Technology Agency |
References | De Schepper, S., Schreck, M., Beck, K. M., Matthiessen, J., Fahl, K. and Mangerud, G., 2015, Early Pliocene onset of modern Nordic circulation related to ocean gateway changes. Nat. Commun., 6, 8569, doi: 10.1038/ncomms9659. Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E. and Williams, F., 2014, Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 508, 477–482. Takahashi, K., Fujitani, N. and Yanada, M., 2002, Long term monitoring of particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990–2000. Prog. Oceanogr., 55, 95–112. Caissie, B. E., Brigham-Grette, J., Cook, M. S. and Colmenero-Hidalgo, E., 2016, Bering Sea surface water conditions during Marine Isotope Stages 12–11 at Navarin Canyon(IODP Site U1345). Clim. Past, 12, 1739–1763. Mix, A. C., Pisias, N. G., Ruch, W., Wilson, J., Morey, J. and Hagelberg, T. K., 1995, Benthic foraminifer stable isotope record from Site 849(0–5 Ma): Local and global climate changes. In Pisias N. G. et al. eds., Proceedings of the Ocean Drilling Program, Sci. Res., 138, Ocean Drill. Program, College Station, TX., 371–412. De Boer, A. M. and Nof, D., 2004, The Bering Strait's grip on the northern hemisphere climate. Deep Sea Res. Part I, 51, 1347–1366. Tyrrell, T., Merico, A., Waniek, J. J., Wong, C. S., Metzl, N. and Whitney, F., 2005, Effect of seafloor with on phytoplankton blooms in high-nitrate, low-chlorophyll(HNLC)regions. Jour. Geophys. Res., 110, G02007, doi: 10.1029/2005JG000041. Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D. and Piotrowski, A. M., 2012, Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition. Science, 337, 704–709. Reid, P. C., Johns, D. G., Edwards, M., Starr, M., Poulin, M. and Snoeijs, P., 2007, A biological consequence of reducing Arctic ice cover: Arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Global Change Biol., 13, 1910–1921. Poulin, M., Lundholm, N., Bérard-Therriault, L., Starr, M. and Gagnon, R., 2010, Morphological and phylogenetic comparisons of Neodenticula seminae(Bacillariophyta)populations between the subarctic Pacific and the Gulf of St. Lawrence. Eur. Jour. Phycol., 45, 127–142. Cassie, B. E., Brigham-Grette, J., Lawrence, K. T., Hervert, T. D. and Cook, M. S., 2010, Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records. Paleoceanography, 25, PA1206, doi: 10.1029/2008PA001671. Horikawa, K., Martin, E. E., Basak, C., Onodera, J., Seki, O., Sakamoto, T.,…Kawamura, K., 2015, Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. Nat. Commun., 6, 7587, doi: 10.1038/ncomms8587. Max, L., Lembke-Jene, L., Riethdorf, J. R., Tiedemann, R., Nürnberg, D., Kühn, H. and Mackensen, A., 2014, Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation. Clim. Past, 10, 591–605. De Schepper S. and Head, M. J., 2014, New late Cenozoic acritarchs: evolution, palaeocology, and correlation potential in high latitude oceans. Jour. Systematic Palaeontol., 12, 493–519. Tanaka, S. and Takahashi, K., 2005, Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages, Deep Sea Res. Part II, 52, 2131–2149. Paulmier, A., Ruiz-Pino, D. and Garçon, V., 2011, CO2 maximum in the oxygen minimum zone(OMZ). Biogeoscience, 8, 239–252. Hu, A., Meehl, G. A. and Han, W., 2007, Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophys. Res. Lett., 34, L05704, doi: 10.1029/2006GL028906. Bailey, I., Liu, Q., Swann, G. E., Jiang, Z., Sun, Y., Zhao, X. and Roberts, A. P., 2011, Iron fertilization and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth Planet. Sci. Lett., 307, 253–265. Ojha, M. and Maiti, S., 2016, Sediment classification using neural networks: An example from the site-U1344A of IODP Expedition 323 in the Bering Sea. Deep Sea Res. Part II, 125–126, 202–213. Setoyama, E. and Kaminski, M. A., 2015, Neogene benthic foraminifera from the southern Bering Sea(IODP Expedition 323). Palaeontol. Electronica, 18.2.38A, doi: 10.26879/462. Takahashi, K., Ravelo, A. C. and Okazaki, Y., 2016, Introduction to Pliocene Pleistocene paleoceanography of the Bering Sea. Deep Sea Res. Part II, 125–126, 1–7. Zhang, Q., Chen, M., Zhang, L., Wang, R., Xiang, R. and Hu, W., 2014b, Radiolarian biostratigraphy in the Southern Bering Sea since Pliocene, Sci. China Earth Sci., 57, 682–692. Dadd, K. and Foley, K., 2016, A shape and compositional analysis of ice-rafted debris in cores from IODP Expedition 323 in the Bering Sea. Deep Sea Res. Part II, 125–126, 191–201. Sato, K., Kawabata, H., Scholl, D. W., Hyodo, H., Takahashi, K., Suzuki, K. and Kumagai, H., 2015, 40Ar–39Ar dating and tectonic implications of volcanic rocks recovered at IODP Hole U1342A and D on Bowers Ridge, Bering Sea. Deep Sea Res. Part II, 125–126, 214–226. Takahashi, K. Asahi, H., Okazaki, Y., Onodera, J., Tsutsui, H., Ikenoue, T.,…Iwasaki, S., 2012, Museum archives of the 19 years long time-series sediment trap samples collected at central subarctic Pacific Station SA and Bering Sea Station AB during 1990–2010. Mem. Fac. Sci. Kyushu Univ., Ser. D, Earth Planet. Sci., 32, 1–38. Cook, M. S. and Keigwin, L. D., 2015, Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: Evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography, 30, 174–195. Sancetta, C., 1983, Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea. Deep Sea Res. Part A., 30, 851–869. Steele, M., Morison, J., Ernold, W., Rigor, I., Ortneyer, M. and Shimada, K., 2004, Circulation of summer Pacific halocline water in the Arctic Ocean. Jour. Geophys. Res., 109, C02027, doi: 10.1029/2003JC002009. Ohkushi, K., Itaki, T. and Nemoto, N., 2003, Last Glacial-Holocene change in intermediate-water ventilation in the Northwestern Pacific. Quatern., Sci., Rev., 22, 1477–1484. Wehrmann, L. M., Risgaard-Petersen, N., Schrum, H. N., Walsh, E. A., Huh, Y., Ikehara, M.,…the Integrated Ocean Drilling Program Expedition 323 Scientific Party, 2011, Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope(IODP Exp. 323). Chem. Geol., 284, 251–261. Kim, S., Khim, B. and Goo, H., 2015, Clay mineral stratigraphy during the last 2.4 Ma at IODP Exp. 323 Site U1343 in the Bering Sea. Mar. Geol., 359, 163–168. Channell, J. E. T., Cuan, C. and Hodell, D. A., 2009, Stacking paleointensity and oxygen isotope data for the alst 1.5 Myr(PISO-1500). Earth Planet. Sci. Lett., 283, 14–23. Wehrmann, L. M., Ockert, C., Mix, A. C., Gussone, N., Teichert, B. M. A. and Meister, P., 2016, Repeated occurrences of methanogenic zones, diagenetic dolomite formation and linked silicate alteration in southern Bering Sea sediments(Bowers Ridge , IODP Exp. 323 Site U1341). Deep Sea Res. Part II, 125–126, 117–132. Cavalieri, D., Parkinson, C., Gloersen, P. and Zwalley, H. J., 1996, (update annually), Sea-ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. Boulder, Colorado, USA: National Snow and Ice Data Center. Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A. and the Expedition 323 Scientists, 2011a, Proc. IODP., 323. Tokyo(Integrated Ocean Drilling Program Management International, Inc.). Kohfeld, K. E. and Chase, Z., 2011, Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean. Quatern. Sci. Revs., 30, 3350–3363. 岡崎裕典(Okazaki, Y.), 2015, 氷期の海洋深層炭素レザバーについて(On the glacial carbon reservoir in the deep-sea). 地球化学(Geochemistry), 49, 131–152. Jicha, B. R., Scholl, D. W., Singer, B. S., Yogodzinski, G. M. and Kay, M. S., 2006, Revised age of Aleutian Island Arc formation implies high rate of magma production. Geology, 34, 661–664. McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and Brown-Leger, S., 2004, Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 6985, 834–837. Stabeno, P. J., Schumacher, J. D. and Ohtani, K., 1999, The physical oceanography of the Bering Sea. In Loughlin, T. R. and Ohtani, K. eds., Dynamics of the Bering Sea: A Summary of Physical, Chemical, and Biological Characteristics, and Synopsis of the Bering Sea, North Pacific marine Science Organization(PICES), University of Alaska, Sea Grant, AK-SG-99-03, 1–28. Praetorius, S. K., Mix, A. C., Walczak, M. H., Wolhow, M. D., Addision, J. A. and Prahl, F. G., 2015, North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature, 527, 362–366. Ikenoue, T., Okazaki, Y., Takahashi, K. and Sakamoto, T., 2016, Bering Sea radiolarian biostratigraphy and paleoceanography at IODP Site U1341 during the last four million years. Deep Sea Res. Part II, 125–126, 38–55. Itaki, T., Uchida, M., Kim, S., Shin, H. S., Tada, R. and Khim, B. K., 2009, Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian species Cycladophora davisiana. Jour. Quatern. Sci., 24, 856–865. Kim, S., Takahashi, K., Khim, B., Kanematsu, Y., Asahi, H. and Ravelo, A. C., 2014, Biogenic opal production changes during the Mid-Pleistocene Transition in the Bering Sea(IODP Expedition 323 Site U1343). Quatern. Res., 81, 151–157. Pérez, M. E., Lin, H.-L., Lange, C. B. and Schneider, R., 2001, Pliocene–Pleistocene opal records off southwest Africa, sites 1082 and 1084: A comparison of analytical techniques. In Wefer, G., Berger, W. H. and Richrwe, C., Proceedings of the ODP Science Results, Ocean Drilling Program, College Station, TX. |
References_xml | – reference: Tziperman, E. and Gildor, H., 2003, On the mid-Pleistocene transition to 100-kyr glacial cycles and the asymmetry between glaciation and deglaciation times. Paleoceanography, 18, 1001, doi: 10.1029/2001PA000627. – reference: Ravelo, A. C., Andreasen, D. H., Lyle, M., Olivarez Lyle, A. and Wara, M. W., 2004, Regional climate shifts caused by gradual global cooling in the Pliocene epoch. Nature, 429, 263–267. – reference: Voelker, A. H. L., Rodrigues, T., Billups, K., Oppo, D., McManus, J., Stein, R.,…Grimalt, J. O., 2010, Variations in mid-latitude North Atlantic surface water properties during the mid-Brunhes(MIS9–14) and their implications for the thermohaline circulation. Clim. Past, 6, 531–552. – reference: Katsuki, K., Khim, B. K., Itaki, T., Harada, N., Sakai, H., Ikeda, T.,…Asahi, H., 2009, Land-sea linkage of Holocene paleoclimate on the Southern Bering Continental Shelf. Holocene, 19, 747–756. – reference: Praetorius, S. K., Mix, A. C., Walczak, M. H., Wolhow, M. D., Addision, J. A. and Prahl, F. G., 2015, North Pacific deglacial hypoxic events linked to abrupt ocean warming. Nature, 527, 362–366. – reference: Colmenero-Hidalgo, E. and Flores, J-A., 2013, Data report: Late Pliocene to early Quaternary calcareous nannofossils, IODP Expedition 323 Site U1341, Bering Sea, In Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A., and the Expedition 323 Scientists, Proc. IODP, 323, Tokyo(Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.323.201.2013. – reference: Cook, M. S., Keigwin, L. D. and Sancetta, C. A., 2005, The deglacial history of surface and intermediate water of the Bering Sea. Deep Sea Res. Part II, 52, 2163–2173. – reference: Wehrmann, L. M. and Ferdelman, T. G., 2014, Biogeochemical consequences of the sedimentary subseafloor biosphere. In Sterin, R., Blackman, D. K., Inagaki, F., and Larsen, H.-C., eds., Developments in Marine Geology vol. 7, Elsevier, 217–252. – reference: Channell, J. E. T., Cuan, C. and Hodell, D. A., 2009, Stacking paleointensity and oxygen isotope data for the alst 1.5 Myr(PISO-1500). Earth Planet. Sci. Lett., 283, 14–23. – reference: Nakatsuka, T., Watanabe, K., Handa, N., Matsumoto, E. and Wada, E., 1995, Glacial to interglacial surface nutrient variations of Bering deep basins recorded by δ13C and δ15N of sedimentary organic matter. Paleoceanography, 10, 1047–1061. – reference: Sancetta, C., Heusser, C., Labeyrie, L., Naidu, A. S. and Robinson, S. W., 1985, Wisconsin–Holocene palaeoenvironment of the Bering Sea: Evidence from diatoms, pollen, oxygen isotopes and clay minerals. Mar. Geol., 62, 55–68. – reference: Teraishi, A., Suto, I., Onodera, J. and Takahashi, K., 2016, Diatom, silicoflagellate and ebridian biostratigraphy and paleoceanography in IODP 323 Hole U1343E at the Bering slope site. Deep Sea Res. Part II, 125–126, 18–28. – reference: Knudson, K. P. and Ravelo, A. C., 2015a, North Pacific Intermediate Water circulation enhanced by the closure of the Bering Strait. Palaeoceanography, 30, 1287–1304. – reference: Hu, A., Meehl, G. A. and Han, W., 2007, Role of the Bering Strait in the thermohaline circulation and abrupt climate change. Geophys. Res. Lett., 34, L05704, doi: 10.1029/2006GL028906. – reference: Zhang, Q., Chen, M., Zhang, L., Hu, W. and Xiang, R., 2014a, Variations in the radiolarian assemblages in the Bering Sea since Pliocene and their implications for paleoceanography. Palaeogeogr. Palaeoclimatol. Palaeoecol., 410, 337–350. – reference: Matsumoto, K., Oba, T., Lynch-Stieglitz, J. and Yamamoto, H. 2002, Interior hydrography and circulation of the glacial Pacific Ocean. Quatern. Sci. Revs., 21, 1693–1704. – reference: Onodera, J. and Takahashi, K., 2009, Long-term diatom fluxes in response to oceanographic conditions at Stations AB and SA in the central subarctic Pacific and the Bering Sea, 1990–1998. Deep Sea Res. Part I, 56, 189–211. – reference: McManus, J. F., Francois, R., Gherardi, J. M., Keigwin, L. D., and Brown-Leger, S., 2004, Collapse and rapid resumption of Atlantic meridional circulation linked to deglacial climate changes. Nature, 428, 6985, 834–837. – reference: 岡崎裕典(Okazaki, Y.), 2015, 氷期の海洋深層炭素レザバーについて(On the glacial carbon reservoir in the deep-sea). 地球化学(Geochemistry), 49, 131–152. – reference: De Schepper S. and Head, M. J., 2014, New late Cenozoic acritarchs: evolution, palaeocology, and correlation potential in high latitude oceans. Jour. Systematic Palaeontol., 12, 493–519. – reference: Kim, S., Khim, B. and Goo, H., 2015, Clay mineral stratigraphy during the last 2.4 Ma at IODP Exp. 323 Site U1343 in the Bering Sea. Mar. Geol., 359, 163–168. – reference: Springer, A. M., Mcroy, C. P. and Flint, M. V., 1996, The Bering Sea Green Belt: Shelf-edge processes and ecosystem production. Fish. Oceanogr., 5, 205–223. – reference: Paulmier, A., Ruiz-Pino, D. and Garçon, V., 2011, CO2 maximum in the oxygen minimum zone(OMZ). Biogeoscience, 8, 239–252. – reference: Knudson, K. P. and Ravelo, A. C., 2015b, Enhanced subarctic Pacific stratification and nutrient utilization during glacials over the last 1.2 Myr. Geophys. Res. Lett., 42, 9870–9879. – reference: Max, L., Riethdorf, J.-R., Tiedemann, R., Smirnova, M., Lembke-Jene, L., Fahl, K.,…Mollenhauer, G., 2012, Sea surface temperature variability and sea-ice extent in the subarctic northwest Pacific during the past 15,000 years. Paleoceanography, 27, PA3213, doi: 10.1029/2012PA002292. – reference: Chen, M., Zhang, Q., Zhang, L., Alvarez, C. and Wang, R., 2014, Stratigraphic distribution of the radiolarian Spongodiscus biconcavus Haeckel at IODP Site U1340 in the Bering Sea and its paleoceanographic significance. Palaeoworld, 23, 90–104. – reference: McClymont, E. L., Rosell-Melê, A., Haug, G. H. and Lloyd, J. M., 2008, Expansion of subarctic water masses in the North Atlantic and Pacific oceans and implications for mid-Pleistocene ice sheet growth. Paleoceanography, 23, PA4214, doi: 10.1029/2008PA001622. – reference: Coachman, L. K. and Agaard, K., 1981, Reevaluation of water transports in the vicinity of Bering Strait. In Hood, D. W. and Calder, J. A., eds., The Eastern Bering Sea Shelf: Oceanography and Resources, Univ. Washington Press, Seattle, 95–110. – reference: Hu, A., Meehl, G. A., Otto-Bliesner, B. L., Waelbroeck, C., Han, W., Loutre, M. F.,…Rosenbloom, N., 2010, Influence of Bering Strait flow and North Atlantic circulation on glacial sea-level changes. Nat. Geosci., 3, 118–121. – reference: Riethdorf, J.-R., Nürnberg, D., Max, L., Tiedemann, R., Gorbarenko, S. A. and Malakhov, M. I., 2013, Millennial-scale variability of marine productivity and terrigenous matter supply in the western Bering Sea over the past 180 kyr, Clim. Past, 9, 1345–1373. – reference: Mix, A. C., Pisias, N. G., Ruch, W., Wilson, J., Morey, J. and Hagelberg, T. K., 1995, Benthic foraminifer stable isotope record from Site 849(0–5 Ma): Local and global climate changes. In Pisias N. G. et al. eds., Proceedings of the Ocean Drilling Program, Sci. Res., 138, Ocean Drill. Program, College Station, TX., 371–412. – reference: Kato, Y., Onodera, J., Suto, I., Teraishi, A. and Takahashi, K., 2016, Pliocene and Pleistocene paleoceanography in the western subarctic Pacific based on diatom analyses of ODP Leg 145 Hole 884B and IODP Expedition 323 Holes U1341B and U1343E. Deep Sea Res. Part II, 125–126, 29–37. – reference: Pérez, M. E., Lin, H.-L., Lange, C. B. and Schneider, R., 2001, Pliocene–Pleistocene opal records off southwest Africa, sites 1082 and 1084: A comparison of analytical techniques. In Wefer, G., Berger, W. H. and Richrwe, C., Proceedings of the ODP Science Results, Ocean Drilling Program, College Station, TX., 1–16. – reference: 岡崎裕典(Okazaki, Y.), 2012, 北太平洋における古海洋環境復元研究: 最終氷期以降の海洋循環変化(Paleoceanography in the North Pacific: Ocean circulation change since the last glacial period).海の研究(Oceanography in Japan), 21, 51–68. – reference: Riethdorf, J., Thibodeau, B., Ikehara, M., Nürnberg, D., Max, L., Tiedemann, R. and Yokoyama, Y., 2016, Surface nitrate utilization in the Bering sea since 180 ka BP: Insight from sedimentary nitrogen isotopes. Deep Sea Res. Part II, 125–126, 163–176. – reference: Clark., P. U., Archer, D., Pollard, D., Blum, J. D., Rial, J. A., Brovkin, V.,…Roy, M., 2006, The middle Pleistocene transition: Characteristics, mechanism, and implication for long-term changes in atmospheric pCO2. Quatern. Sci. Rev., 25, 3150–3184. – reference: Hein, J. R., O'Neil, J. R. and Jones, M. G., 1979, Origin of authigenic carbonates in sediment from the deep Bering Sea. Sedimentolgy, 26, 681–705. – reference: Okazaki, Y., Kimoto, K., Asahi, H., Sato, M., Nakamura, Y. and Harada, N., 2014, Glacial to deglacial ventilation and productivity changes in the southern Okhotsk Sea. Palaeogeogr., Palaeoclimatol., Palaeoecol., 395, 53–66. – reference: Schlung, S. A., Ravelo, A. C., Aiello, I. W., Andreasen, D. H., Cook, M. S., Drake, M.,…Takahashi, K., 2013, Millennial-scale climate change and intermediate water circulation in the Bering Sea from 90 ka: A high-resolution record from IODP Site U1340. Paleoceanography, 28, 54–67. – reference: Kim, S., Khim, B. K., Uchida, M., Itaki, T. and Tada, R., 2011, Millennial-scale paleocanographic events and implication for the intermediate-water ventilation in the northern slope area of the Bering Sea during the last 71 kyrs. Global Planet. Change, 79, 89–98. – reference: Poulin, M., Lundholm, N., Bérard-Therriault, L., Starr, M. and Gagnon, R., 2010, Morphological and phylogenetic comparisons of Neodenticula seminae(Bacillariophyta)populations between the subarctic Pacific and the Gulf of St. Lawrence. Eur. Jour. Phycol., 45, 127–142. – reference: Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A. and the Expedition 323 Scientists, 2011a, Proc. IODP., 323. Tokyo(Integrated Ocean Drilling Program Management International, Inc.). – reference: Lisiecki, L. E. and Raymo, M. E., 2005, A Pliocene–Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20, PA1003, doi: 10.1029/2004PA001071. – reference: Brunelle, B., Sigma, D. M., Cook, M. S., Keigwin, L. D., Haug, G. H., Plessen, B.,…Jaccard, S. L., 2007, Evidence from diatom-bound nitrogen isotopes for subarctic Pacific stratification during the last ice age and a link to North Pacific denitrification changes. Paleoceanography, 22, PA1215, doi: 10.1029/2005PA001205. – reference: Dadd, K. and Foley, K., 2016, A shape and compositional analysis of ice-rafted debris in cores from IODP Expedition 323 in the Bering Sea. Deep Sea Res. Part II, 125–126, 191–201. – reference: Cassie, B. E., Brigham-Grette, J., Lawrence, K. T., Hervert, T. D. and Cook, M. S., 2010, Last Glacial Maximum to Holocene sea surface conditions at Umnak Plateau, Bering Sea, as inferred from diatom, alkenone, and stable isotope records. Paleoceanography, 25, PA1206, doi: 10.1029/2008PA001671. – reference: Cook, M. S. and Keigwin, L. D., 2015, Radiocarbon profiles of the NW Pacific from the LGM and deglaciation: Evaluating ventilation metrics and the effect of uncertain surface reservoir ages. Paleoceanography, 30, 174–195. – reference: Okazaki, Y., Timmermann, A., Menviel, L., Harada, N., Abe-Ouchi, A., Chikamoto, M. O.,…Asahi, H., 2010, Deepwater formation in the North Pacific during the last glacial termination. Science, 329, 200–204. – reference: Max, L., Lembke-Jene, L., Riethdorf, J. R., Tiedemann, R., Nürnberg, D., Kühn, H. and Mackensen, A., 2014, Pulses of enhanced North Pacific Intermediate Water ventilation from the Okhotsk Sea and Bering Sea during the last deglaciation. Clim. Past, 10, 591–605. – reference: Schmidtko, S., Stramma, L. and Visbeck, M., 2017, Decline in global oceanic oxygen content during the past five decades. Nature, 542, 335–339. – reference: Stabeno, P. J., Schumacher, J. D. and Ohtani, K., 1999, The physical oceanography of the Bering Sea. In Loughlin, T. R. and Ohtani, K. eds., Dynamics of the Bering Sea: A Summary of Physical, Chemical, and Biological Characteristics, and Synopsis of the Bering Sea, North Pacific marine Science Organization(PICES), University of Alaska, Sea Grant, AK-SG-99-03, 1–28. – reference: Gladenkov, A. Y., 2006, Neogene diatoms from the Sandy Ridge section, Alaska Peninsula: Significance for stratigraphic and paleogeographic reconstructions. Stratigr. Geol. Correl., 14, 73–90. – reference: Kienast, S. S., Hendy, I. L., Crusius, J., Pedersen, T. F. and Calvert, S. E., 2004, Export production in the subarctic North Pacific over the last 800 kyrs: No evidence for iron fertilization? Jour. Oceanogr., 60, 189–203. – reference: Maslin, M. A. and Brierley, C. M., 2015, The role of orbital forcing in the Early Middle Pleistocene Transition. Quatern. Inter., 389, 47–55. – reference: Kinney, J. C. and Maslowski, W., 2012, On the oceanic communication between the Western Subarctic Gyre and the deep Bering Sea. Deep Sea Res. Part I, 66, 11–25. – reference: Cook, M. S., Ravelo, A. C., Mix, A., Nesbitt, I. M. and Miller, N. V., 2016, Tracing subarctic Pacific water masses with benthic foraminiferal stable isotopes during the LGM and late Pleistocene. Deep Sea Res. Part II, 125–126, 84–95. – reference: Kim, S., Takahashi, K., Khim, B., Kanematsu, Y., Asahi, H. and Ravelo, A. C., 2014, Biogenic opal production changes during the Mid-Pleistocene Transition in the Bering Sea(IODP Expedition 323 Site U1343). Quatern. Res., 81, 151–157. – reference: Jicha, B. R., Scholl, D. W., Singer, B. S., Yogodzinski, G. M. and Kay, M. S., 2006, Revised age of Aleutian Island Arc formation implies high rate of magma production. Geology, 34, 661–664. – reference: Horikawa, K., Asahara, Y., Yamamoto, K. and Okazaki, Y., 2010, Intermediate water formation in the Bering Sea during glacial periods: Evidence from neodymium isotope ratios. Geology, 38, 435–438. – reference: Lüthi, D., Le Floch, M., Bereiter, B., Blunier, T., Barnola, J. M., Siegenthaler, U.,…Stocker, T. F., 2008, High-resolution carbon dioxide concentration record 650,000–800,000 years before present. Nature, 453, 7193, 379–382. – reference: Rohling, E. J., Foster, G. L., Grant, K. M., Marino, G., Roberts, A. P., Tamisiea, M. E. and Williams, F., 2014, Sea-level and deep-sea-temperature variability over the past 5.3 million years. Nature, 508, 477–482. – reference: Maslin, M. A., Haug, G. H., Sarnthein, M. and Tiedermann, R., 1996, The progressive intensification of Northern Hemisphere glaciation as seen from the North Pacific. Geol. Rundsch, 85, 452–465. – reference: Tyrrell, T., Merico, A., Waniek, J. J., Wong, C. S., Metzl, N. and Whitney, F., 2005, Effect of seafloor with on phytoplankton blooms in high-nitrate, low-chlorophyll(HNLC)regions. Jour. Geophys. Res., 110, G02007, doi: 10.1029/2005JG000041. – reference: Wehrmann, L. M., Arndt, S., Ma, C., Ferdelman, T. G. and Brunner, B., 2013, The evolution of early diagenetic signals in Bering Sea subseafloor sediments in response to varying organic carbon deposition over the last 4.3 Ma, Geochim. Cosmochim. Acta, 109, 175–196. – reference: Hu, A., Meehl, G. A., Han, W., Otto-Bliestner, B., Abe-Ouchi, A. and Rosenbloom, N., 2015, Effects of the Bering Strait closure on AMOC and global climate under different background climates. Prog. Oceanogr., 132, 174–196. – reference: Kaminski, M. A., Kender, S., Ciurej, A., Bãlc, R. and Setoyama, E., 2013, Pliocene agglutinated benthic foraminifera from Site U1341 in the Bering Sea(IODP Expedition 323). Geol. Quartern., 57, 335–342. – reference: Kender, S., McClymont, E. L., Elmore, A. C., Emanuele, D., Leng, M. J. and Elderfield, H., 2016, Mid Pleistocene foraminiferal mass extinction coupled with phytoplankton evolution. Nat. Commun., 7, 11970, doi: 10.1038/ncomms11970. – reference: Wehrmann, L. M., Risgaard-Petersen, N., Schrum, H. N., Walsh, E. A., Huh, Y., Ikehara, M.,…the Integrated Ocean Drilling Program Expedition 323 Scientific Party, 2011, Coupled organic and inorganic carbon cycling in the deep subseafloor sediment of the northeastern Bering Sea Slope(IODP Exp. 323). Chem. Geol., 284, 251–261. – reference: Hönisch, B., Hemming, N. G., Archer, D., Siddall, M. and McManus, J. F., 2009, Atmospheric carbon dioxide concentration across the Mid-Pleistocene Transition, Science, 324, 1551–1554. – reference: März, C., Poulton, S. W., Wagner, T., Schnetger, B. and Brumsack, H., 2014, Phosphorus burial and diagenesis in the central Bering Sea(Bowers Ridge, IODP Site U1341): Perspectives on the marine P cycle. Chem. Geol., 363, 270–282. – reference: Stroynowski, Z., Ravelo, A. C. and Andreasen, D., 2015, A Pliocene to recent history of the Bering Sea at Site U1340A, IODP Expedition 323, Palaeoceanography, 30, 1641–1656. – reference: Einarsson, T., Hopkins, D. M. and Doell, R. R., 1967, The Stratigraphy of Tjörnes, Northern Iceland, and the History of the Bering Land Bridge. In Hopkins, D. M. eds., The Bering Land Bridge, Stanford Univ. Press. Stanford, 312–325. – reference: Kawabata, H., Sato. K., Tatsumi, Y., Scholl, D. W., Takahashi, K. and the Expedition 323 Scientists, 2011, Description of basement volcanic sequences in Holes U1342A and U1342D on Bowers Ridge in the Bering Sea. In Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A. and the Expedition 323 Scientists, Proc. IODP, 323, Tokyo(Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.323.110.2011. – reference: De Boer, A. M. and Nof, D., 2004, The Bering Strait's grip on the northern hemisphere climate. Deep Sea Res. Part I, 51, 1347–1366. – reference: Brunelle, B. G., Sigman, D. M., Jaccard, S. L., Keigwin, L. D., Plessen, B., Schettler, G.,…Haug, G. H., 2010, Glacial/interglacial changes in nutrient supply and stratification in the western subarctic North Pacific since the penultimate glacial maximum. Quatern. Sci. Revs., 29, 2579–2590. – reference: Haug, G. H., Sigman, D. M., Tiedemann, R., Pedersen, T. F. and Sarnthein, M., 1999, Onset of permanent stratification in the subarctic Pacific Ocean. Nature, 401, 779–782. – reference: Lambert, F., Delmonte, B., Petit, J. R., Bigler, M., Kaufmann, P. R., Hutterli, M. A.,…Maggi, V., 2008, Dust-climate couplings over the past 800,000 years from the EPICA Dome C ice core. Nature, 452, 616–619. – reference: Koç, N., Hodell, D. A., Kleiven, H. and Labeyrie, L., 1999, High-resolution Pleistocene diatom biostratigraphy of Site 983 and correlations with isotope stratigraphy. In Raymo, M. E., Jansen, E., Blum, P. and Herbert, T. D., eds., Proceedings of the Ocean Drilling Program, Scientific Results, College Station, TX(Ocean Drilling Program), 162, 1–12. – reference: Caissie, B. E., Brigham-Grette, J., Cook, M. S. and Colmenero-Hidalgo, E., 2016, Bering Sea surface water conditions during Marine Isotope Stages 12–11 at Navarin Canyon(IODP Site U1345). Clim. Past, 12, 1739–1763. – reference: Janecek, T. R., 2000, Data report: Late Neogene biogenic opal data for Leg 167 sites on the Calirofnia margin. In Lyle, M., Koizumi, I., Richter, C. and Moore, T. C., eds., Proceedings of the ODP Science Results, Ocean Drilling Program, College Station, TX, 167, 213–214. – reference: Aiello, I. W. and Ravelo, A. C., 2012, Evolution of marine sedimentation in the Bering Sea since the Pliocene. Geosphere, 6, 1231–1253. – reference: Ojha, M. and Maiti, S., 2016, Sediment classification using neural networks: An example from the site-U1344A of IODP Expedition 323 in the Bering Sea. Deep Sea Res. Part II, 125–126, 202–213. – reference: Engelhardt, T., Kallmeyer, J., Cypionka, H. and Engelen, B., 2014, High virus-to-cell ratios indicate ongoing production of viruses in deep subsurface sediments. ISME Jour., 8, 1503–1509. – reference: Tanaka, S. and Takahashi, K., 2005, Late Quaternary paleoceanographic changes in the Bering Sea and the western subarctic Pacific based on radiolarian assemblages, Deep Sea Res. Part II, 52, 2131–2149. – reference: Zhang, Q., Chen, M., Liu, J., Zhaojie, Yu, Zhang, L. and Xiang, R., 2015, Clay mineral assemblages at IODP Site U1340 in the Bering Sea and their paleoclimatic significance, Sci. China Earth Sci., 58, 707–717. – reference: Pierre, C., Blanc-Valleron, M. M., Caquineau, S., März, C., Ravelo, A. C., Takahashi, K. and Zarikian, C. A., 2016, Mineralogical, geochemical and isotopic characterization of authigenic carbonates from the methane-bearing sediments of the Bering Sea continental margin(IODP Expedition 323, Sites U1343–U1345). Deep Sea Res., Part II, 125–126, 133–144. – reference: Ohkushi, K., Itaki, T. and Nemoto, N., 2003, Last Glacial-Holocene change in intermediate-water ventilation in the Northwestern Pacific. Quatern., Sci., Rev., 22, 1477–1484. – reference: Garcia, H. E., Locarnini, R. A., Boyer, T. P., Antonov, J. I., Baranova, O. K., Zweng, M. M.,…Johnson, D. R., 2014, Dissolved Oxygen, Apparent Oxygen Utilization, and Oxygen Saturation. In Levitus, S., ed., World Ocean Atlas 2013, Volume 3, A. Mishonov Technical Ed., NOAA Atlas NESDIS 75, 27 p. – reference: Takahashi, K., Fujitani, N. and Yanada, M., 2002, Long term monitoring of particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990–2000. Prog. Oceanogr., 55, 95–112. – reference: Expedition 323 Scientists, 2011, Expedition 323 Summary. In Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A. and Expedition 323 Scientists, Proc. IODP, 323, Tokyo(Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.323.101.2011. – reference: Woodard, S. C., Rosenthal, Y., Miller, K. G., Wright, J. D., Chiu, B. K. and Lawrence, K. T., 2014. Antarctic role in Northern Hemisphere glaciation. Science, 346, 847–851. – reference: Takahashi, K. Asahi, H., Okazaki, Y., Onodera, J., Tsutsui, H., Ikenoue, T.,…Iwasaki, S., 2012, Museum archives of the 19 years long time-series sediment trap samples collected at central subarctic Pacific Station SA and Bering Sea Station AB during 1990–2010. Mem. Fac. Sci. Kyushu Univ., Ser. D, Earth Planet. Sci., 32, 1–38. – reference: Rella, S. F., Tada, R., Nagashima, K., Ikehara, M., Itaki, T., Ohkushu, K.,…Uchida, M., 2012, Abrupt changes of intermediate water properties on the northeastern slope of the Bering Sea during the last glacial and deglacial period. Palooceanography, 27, PA3202, doi: 10.1029/2011PA002205. – reference: Okazaki, Y., Sagawa, T., Asahi, H., Horikawa, K. and Onodera, J., 2012, Ventilation changes in the western North Pacific since the last glacial period. Clim. Past, 8, 17–24. – reference: Zhang, Q., Chen, M., Zhang, L., Wang, R., Xiang, R. and Hu, W., 2014b, Radiolarian biostratigraphy in the Southern Bering Sea since Pliocene, Sci. China Earth Sci., 57, 682–692. – reference: Okazaki, Y., Takahashi, K., Asahi, H., Katsuki, K., Hori, J., Yasuda, H.,…Tokuyama, H., 2005, Productivity changes in the Bering Sea during the late Quaternary. Deep Sea Res. Part II, 52, 2150–2162. – reference: Okazaki, Y., Ulincy, A. J., Alvarez Zarikian, C. A. and Asahi, H., 2016, Data report: Benthic foraminiferal stable isotope records at Site U1344, Integrated Ocean Drilling Program Expedition 323. In Takahashi , K., Ravelo, A. C., Alvarez Zarikian, C. A. and the Expedition 323 Scientists, Proc. IODP, 323, Tokyo(Integrated Ocean Drilling Program Management International, Inc.). doi: 10.2204/iodp.proc.323.203.2016. – reference: Katsuki, K. and Takahashi, K., 2005, Diatoms as paleoenvironmental proxies for seasonal productivity, sea-ice and surface circulation in the Bering Sea during the late Quaternary. Deep Sea Res. II, 52, 2110–2130. – reference: Stabeno, P. J., Ladd, C. and Reed, R. K., 2009, Observations of the Aleutian North Slope Current, Bering Sea, 1996-2001. Jour. Geophys. Res., 114, C05015, doi: 10.1029/2007JC004705. – reference: McClymont, E. L., Elmore, A. C., Kender, S., Leng, M. J., Greaves, M. and Elderfield, H., 2016, Pliocene–Pleistocene evolution of sea surface and intermediate water temperatures from the southwest Pacific. Paleoceanography, 31, 895–913. – reference: Sancetta, C., 1983, Effect of Pleistocene glaciation upon oceanographic characteristics of the North Pacific Ocean and Bering Sea. Deep Sea Res. Part A., 30, 851–869. – reference: Asahi, H., Kender, S., Ikehara, M., Sakamoto, T., Takahashi, K. and Ravelo, A. C., 2016, Orbital-scale benthic foraminiferal oxygen isotope stratigraphy at the northern Bering Sea Slope Site U1343(IODP Expedition 323) and its Pleistocene paleoceanographic significance. Deep Sea Res. Part II, 125–126, 66–83. – reference: De Schepper, S., Gibbard, P. L., Sakzmann, U. and Ehlers, J., 2014, A global synthesis of the marine and terrestrial evidence for glaciation during the Pliocene Epoch. Earth Sci. Rev., 135, 83–102. – reference: Setoyama, E. and Kaminski, M. A., 2015, Neogene benthic foraminifera from the southern Bering Sea(IODP Expedition 323). Palaeontol. Electronica, 18.2.38A, doi: 10.26879/462. – reference: Alexander, V. and Niebauer, H., 1981, Oceanography of the eastern Bering Sea ice-edge zone in spring. Limnol. Oceanogr., 26, 1111–1125. – reference: Hayward, B. W., Kawagata, S., Grenfell, H. R., Sabaa, A. T. and O'Neill, T., 2007, Last global extinction in the deep sea during the mid-Pleistocene climate transition, Paleoceanography, 22, PA3103, doi: 10.1029/2007PA001424. – reference: Hillenbrand, C. D. and Cortese, G., 2006, Polar stratification: a critical view from the Southern Ocean. Palaeogeogr. Palaeoclimatol. Palaeoecol., 242, 240–252. – reference: Husum, K., 2016, Planktonic foraminiferal biostratigraphy and assemblages in the Bering Sea during the Pliocene and Pleistocene: IODP sites U1340 and U1343. Deep Sea Res. Part II, 125–126, 56–65. – reference: Soyol-Erdene, T. and Huh, Y., 2013, Rare earth element cycling in the pore waters of the Bering Sea Slope. Chem. Geol., 358, 75–89. – reference: Horikawa, K., Martin, E. E., Basak, C., Onodera, J., Seki, O., Sakamoto, T.,…Kawamura, K., 2015, Pliocene cooling enhanced by flow of low-salinity Bering Sea water to the Arctic Ocean. Nat. Commun., 6, 7587, doi: 10.1038/ncomms8587. – reference: Takahashi, K., Ravelo, A. C. and Okazaki, Y., 2016, Introduction to Pliocene Pleistocene paleoceanography of the Bering Sea. Deep Sea Res. Part II, 125–126, 1–7. – reference: Moffitt, S. E., Moffitt, R. A., Sauthoff, W., Davis, C. V., Hewett, K. and Hill, T. M., 2015, Paleoceanographic insights on recent oxygen minimum zone expansion: Lessons for modern oceanography. PLOS ONE, 10, 1: e0115246, doi: 10.1371/jounal.pone.0115246. – reference: Gorbarenko, S. A., 1996, Stable isotope and lithologic evidence of late-glacial and Holocene oceanography of the northwestern Pacific and its marginal seas. Quatern. Res, 46, 230–250. – reference: Snelling, A. M., Swann, G. E. A., Pike, J. and Leng, M. J., 2014, Pliocene diatom and sponge spicule oxygen isotope ratios from the Bering Sea: isotopic offsets and future directions. Clim. Past, 10, 1837–1842. – reference: Woodgate, R. and Aagaard, K., 2005, Revising the Bering Strait freshwater flux into the Arctic Ocean. Geophys. Res. Lett., 32, L02602, doi: 10.1029/2004GL021747. – reference: Ikenoue, T., Okazaki, Y., Takahashi, K. and Sakamoto, T., 2016, Bering Sea radiolarian biostratigraphy and paleoceanography at IODP Site U1341 during the last four million years. Deep Sea Res. Part II, 125–126, 38–55. – reference: Sato, K., Kawabata, H., Scholl, D. W., Hyodo, H., Takahashi, K., Suzuki, K. and Kumagai, H., 2015, 40Ar–39Ar dating and tectonic implications of volcanic rocks recovered at IODP Hole U1342A and D on Bowers Ridge, Bering Sea. Deep Sea Res. Part II, 125–126, 214–226. – reference: Jang, K., Huh, Y. and Han, Y., 2017, Authigenic Nd isotope record of North Pacific Intermediate Water formation and boundary exchange on the Bering Slope. Quatern., Sci., Rev., 154, 150–163. – reference: Elderfield, H., Ferretti, P., Greaves, M., Crowhurst, S., McCave, I. N., Hodell, D. and Piotrowski, A. M., 2012, Evolution of ocean temperature and ice volume through the Mid-Pleistocene Climate Transition. Science, 337, 704–709. – reference: März, C., Schnetger, B. and Brumsack, H. J., 2013, Nutrient leakage from the North Pacific to the Bering Sea(IODP Site U1341)following the onset of Northern Hemispheric Glaciation? Paleoceanography, 28, 68–78. – reference: Kohfeld, K. E. and Chase, Z., 2011, Controls on deglacial changes in biogenic fluxes in the North Pacific Ocean. Quatern. Sci. Revs., 30, 3350–3363. – reference: Itaki, T., Uchida, M., Kim, S., Shin, H. S., Tada, R. and Khim, B. K., 2009, Late Pleistocene stratigraphy and palaeoceanographic implications in northern Bering Sea slope sediments: evidence from the radiolarian species Cycladophora davisiana. Jour. Quatern. Sci., 24, 856–865. – reference: Iwasaki, S., Takahashi, K., Kanematsu, Y., Asahi, H., Onodera, J. and Ravelo, A. C., 2016, Paleoproductivity and paleoceanography of the last 4.3 Myrs at IODP Expedition 323 Site U1341 in the Bering Sea based on biogenic opal content. Deep Sea Res. Part II, 125–126, 145–154. – reference: Steele, M., Morison, J., Ernold, W., Rigor, I., Ortneyer, M. and Shimada, K., 2004, Circulation of summer Pacific halocline water in the Arctic Ocean. Jour. Geophys. Res., 109, C02027, doi: 10.1029/2003JC002009. – reference: Kanematsu, Y., Takahashi, K., Kim, S., Asahi, H. and Khim, B. K., 2013, Changes in biogenic opal productivity with Milankovitch cycles during the last 1.3 Ma at IODP Expedition 323 Sites U1341, U1343, and U1345 in the Bering Sea. Quatern. Inter., 310, 213–220. – reference: Kallmeyer, J., Pockalny, R., Ram, R., Smith, D. C. and D'Hondt, S., 2012, Global distribution of microbial abundance and biomass in subsea floor sediment. PNAS, 109, 1–4. – reference: Kim, S., Khim, B. and Takahashi, K., 2016, Late Pliocene to early Pleistocene(2.4–1.25 Ma)paleoproductivity changes in the Bering Sea: IODP expedition 323 Hole U1343E. Deep Sea Res. Part II, 125–126, 155–162. – reference: Lund, S., Stoner, J., Okada, M. and Mortazavi, E., 2016, Paleomagnetic field variability and chronostratigraphy of Brunhes-Chron deep-sea sediments from the Bering Sea: IODP Expedition 323. Deep Sea Res. Part II, 125–126, 107–116. – reference: Takahashi, K., Fujitani, N., Yanada, M. and Maita, Y., 2000, Long-term biogenic particle fluxes in the Bering Sea and the central subarctic Pacific Ocean, 1990–1995. Deep Sea Res. Part I, 47, 1723–1759. – reference: Alvarez Zarikian, C. A., 2016, Pleistocene deep Sea ostracods from the Bering Sea(IODP expedition 323). Deep Sea Res. Part II, 125–126, 96–106. – reference: Brigham-Grette, J., Melles, M., Minyuk, P., Andreev, A., Tarasov, P., DeConto, R.,…Herzschuh, U., 2013, Pliocene warmth, polar amplification, and stepped Pleistocene cooling recorded in NE Arctic Russia. Science, 340, 1421–1427. – reference: Reid, P. C., Johns, D. G., Edwards, M., Starr, M., Poulin, M. and Snoeijs, P., 2007, A biological consequence of reducing Arctic ice cover: Arrival of the Pacific diatom Neodenticula seminae in the North Atlantic for the first time in 800 000 years. Global Change Biol., 13, 1910–1921. – reference: Cavalieri, D., Parkinson, C., Gloersen, P. and Zwalley, H. J., 1996, (update annually), Sea-ice concentrations from Nimbus-7 SMMR and DMSP SSM/I-SSMIS Passive Microwave Data. Boulder, Colorado, USA: National Snow and Ice Data Center. – reference: Onodera, J., Takahashi, K. and Nagatomo, R., 2016, Diatoms, silicoflagellates, and ebridians at Site U1341 on the western slope of Bowers Ridge, IODP Expedition 323. Deep Sea Res. Part II, 125–126, 8–17. – reference: Sarnthein, M., Bartoli, G., Prange, M., Schmittner, A., Weinelt, M., Andersen, N. and Garbe-Schönberg, D., 2009, Mid-Pliocene shifts in ocean overturning circulation and the onset of Quaternary-style climates. Clim. Past, 5, 269–283. – reference: Takahashi, K., Ravelo, A. C., Alvarez Zarikian, C. A. and the IODP Expedition 323 Scientists, 2011b, IODP Expedition 323 Pliocene and Pleistocene paleoceanographic changes in the Bering Sea. Sci. Drill., 11, 4–13. – reference: Bailey, I., Liu, Q., Swann, G. E., Jiang, Z., Sun, Y., Zhao, X. and Roberts, A. P., 2011, Iron fertilization and biogeochemical cycles in the sub-Arctic northwest Pacific during the late Pliocene intensification of northern hemisphere glaciation. Earth Planet. Sci. Lett., 307, 253–265. – reference: Wehrmann, L. M., Ockert, C., Mix, A. C., Gussone, N., Teichert, B. M. A. and Meister, P., 2016, Repeated occurrences of methanogenic zones, diagenetic dolomite formation and linked silicate alteration in southern Bering Sea sediments(Bowers Ridge , IODP Exp. 323 Site U1341). Deep Sea Res. Part II, 125–126, 117–132. – reference: De Schepper, S., Schreck, M., Beck, K. M., Matthiessen, J., Fahl, K. and Mangerud, G., 2015, Early Pliocene onset of modern Nordic circulation related to ocean gateway changes. Nat. Commun., 6, 8569, doi: 10.1038/ncomms9659. – reference: Keigwin, L. D., 1998, Glacial-age hydrography of the far northwest Pacific Ocean. Paleoceanography, 13, 323–339. |
SSID | ssib000936372 ssib020472797 ssib023160021 ssib002484403 ssib008477520 ssib002223896 ssib025654070 ssib000961579 ssib003171056 ssib003115821 ssj0041208 |
Score | 2.1020358 |
Snippet | IODP Exp... Our understanding of the paleoceanography of the Bering Sea has been considerably advanced by IODP Expedition 323. The expedition aimed to create a... |
SourceID | proquest jstage |
SourceType | Aggregation Database Publisher |
StartPage | 17 |
SubjectTerms | Bering Sea Climate change Cores Diatoms Expeditions Glaciation Ice Ice formation iNHG Intermediate water Intermediate water masses IODP Meltwater MPT NPIW Palaeoceanography Paleoceanography Pleistocene Pliocene Sea ice Sea level |
Subtitle | 全球水循環・気候変動に関わる顕著な役割 |
Title | IODP Expedition 323ベーリング海掘削航海の成果と今後の展望 |
URI | https://www.jstage.jst.go.jp/article/geosoc/124/1/124_2017.0066/_article/-char/ja https://www.proquest.com/docview/2047253317 |
Volume | 124 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | 地質学雑誌, 2018/01/15, Vol.124(1), pp.17-34 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrR3LahRBcIgRwYv4xGiUPdinsDrTj5nuY8_uxPhWSCC3YXYegT0koslBb3EvMYh4ERSDZ8lBFBEPij-zZvEPvFrVPbMziSJGvAxNd1V1dVVPd1U_qh3nQpLk4CS4SZumgre56NG2ykEhRa6ETFme-eZJlhs3_bkFfnVRLE4c-NE4tbS22ruYPvztvZJ_0SrkgV7xluw-NDsmChmQBv3CFzQM37_S8ZVb3dsmWHFmDl7NMMpIxIhkRKkyEXbKhNZVjoWhJHRJ5JNQkDDAhIyIkiQSRCoiAVgSKQ3WGAawPKIjAyyJMugKsDpVEaBzEoYGHVAiIjsNLMjxiBIGq0NU2LSLsRQykSWJHGpDQXeJ9kmkAJgoD4sgX47XdQ1Jl8hZBJEBtgCRZkmosecYZkwrLJyyNLkhrlAUMtpFihLtmQRHUoYC1MgMzyAWKJA1vCI6NALziQZioYU3PKtuVbWq4W2juyYREC0qeNktGYNmhLS5COPJPYswFVW3Ug5IN8AGhabhICRgFtVlWeYoh1DP1FVaJhDtD9Lm2GeUbk5nnt-GCcJubOV2BmNctcGJZbumOHtPfde_bCcse3G2NH3ssvLeSVWARQ9_wlK-AuMFHobEoJ_-nvjlxiIqf4TYgsZQa-yZLyLFiBRXIHinMO6DY3OQgn-HT49cu9PwCxTzWfNZAwWGd2M7GY1a2YgTSbnkzbiSGEKqeQEcjGTwI2p4MMkCUftJFEOmBvV2Ovg8uF09xge3AONUupWJxz3qliaelb89_4CCurRXTGDZ9sHPW_rV2DMW7PxR50jpera0lc0xZ6KfHHcOXTZPez844VzH0aRVjyYtGE2Gg5fDwZfhYHs4-DB89G708dPo6Yudx5vfN7YhPVx_O9p4Nnq9NVx_8-3z5s7XJ5Cz8_75aOvVSWdhNprvzLXLt1bafUrBUOVFnonA91Oe-rKn_IwWLBEZ84Mi40kgeBYUbgqgbhYwsIlELy0UmLZukeUpzQt2yplcXlnOTzstKRLQTeImGB2xEEwVngqKJMsLSnu560452kokvmsD6sT77zdTznQlzLgckO_HRo3gvnrBmf9QxVnncP2nTzuTq_fW8nPggKz2zpvO-hPiYvBu |
linkProvider | Colorado Alliance of Research Libraries |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=IODP+Expedition+323%E3%83%99%E3%83%BC%E3%83%AA%E3%83%B3%E3%82%B0%E6%B5%B7%E6%8E%98%E5%89%8A%E8%88%AA%E6%B5%B7%E3%81%AE%E6%88%90%E6%9E%9C%E3%81%A8%E4%BB%8A%E5%BE%8C%E3%81%AE%E5%B1%95%E6%9C%9B&rft.jtitle=%E5%9C%B0%E8%B3%AA%E5%AD%A6%E9%9B%91%E8%AA%8C&rft.au=%E5%B0%8F%E9%87%8E%E5%AF%BA%2C+%E4%B8%88%E5%B0%9A%E5%A4%AA%E9%83%8E&rft.au=%E5%B2%A1%E5%B4%8E%2C+%E8%A3%95%E5%85%B8&rft.au=%E9%AB%98%E6%A9%8B%2C+%E5%AD%9D%E4%B8%89&rft.au=%E6%9C%9D%E6%97%A5%2C+%E5%8D%9A%E5%8F%B2&rft.date=2018-01-01&rft.pub=%E4%B8%80%E8%88%AC%E7%A4%BE%E5%9B%A3%E6%B3%95%E4%BA%BA+%E6%97%A5%E6%9C%AC%E5%9C%B0%E8%B3%AA%E5%AD%A6%E4%BC%9A&rft.issn=0016-7630&rft.eissn=1349-9963&rft.volume=124&rft.issue=1&rft.spage=17&rft.epage=34&rft_id=info:doi/10.5575%2Fgeosoc.2017.0066&rft.externalDocID=article_geosoc_124_1_124_2017_0066_article_char_ja |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0016-7630&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0016-7630&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0016-7630&client=summon |