新たに見出した好中球NADPH oxidaseの構成成分p40-phox

好中球は, 生体防御において重要な役割を果たしている. 好中球の主な機能は, 生体内に侵入した細菌, 微生物に向かって遊走し, これら侵入物を貪食した後, 殺菌することである. 好中球の殺菌機構は, 大きく酸素非依存性と酸素依存性の二つにわけられている. 酸素非依存性の殺菌とは, 食胞が顆粒と融合した後, 顆粒内に存在する殺菌性蛋白質や蛋白分解酵素が作用して殺菌を行うことである. 一方, 酸素依存性の殺菌とは, 貪食に伴い酸素代謝が増大し, その結果, 産生されるスーパーオキシドアニオン(O2-)および, その代謝産物が関与する殺菌のことをいう1). O2-はNADPH oxidaseとよばれ...

Full description

Saved in:
Bibliographic Details
Published in炎症 Vol. 18; no. 3; pp. 181 - 189
Main Author 染谷, 明正
Format Journal Article
LanguageJapanese
Published 日本炎症・再生医学会 30.05.1998
日本炎症学会
Online AccessGet full text
ISSN0389-4290
1884-4006
DOI10.2492/jsir1981.18.181

Cover

Loading…
Abstract 好中球は, 生体防御において重要な役割を果たしている. 好中球の主な機能は, 生体内に侵入した細菌, 微生物に向かって遊走し, これら侵入物を貪食した後, 殺菌することである. 好中球の殺菌機構は, 大きく酸素非依存性と酸素依存性の二つにわけられている. 酸素非依存性の殺菌とは, 食胞が顆粒と融合した後, 顆粒内に存在する殺菌性蛋白質や蛋白分解酵素が作用して殺菌を行うことである. 一方, 酸素依存性の殺菌とは, 貪食に伴い酸素代謝が増大し, その結果, 産生されるスーパーオキシドアニオン(O2-)および, その代謝産物が関与する殺菌のことをいう1). O2-はNADPH oxidaseとよばれるスーパーオキシド産生酵素が貪食に伴って活性化されることにより産生される. 近年, O2-産生に関する研究は, NADPH oxidaseの酵素本体ならびに活性化機構について精力的に行われてきた. そして, NADPH oxidaseは複数の成分から構成される複合酵素系であり, 各成分どうしが刺激によって会合し, 活性型のNADPH oxidase複合体となることで, O2-を産生することが明らかとなった2~5).
AbstractList 好中球は, 生体防御において重要な役割を果たしている. 好中球の主な機能は, 生体内に侵入した細菌, 微生物に向かって遊走し, これら侵入物を貪食した後, 殺菌することである. 好中球の殺菌機構は, 大きく酸素非依存性と酸素依存性の二つにわけられている. 酸素非依存性の殺菌とは, 食胞が顆粒と融合した後, 顆粒内に存在する殺菌性蛋白質や蛋白分解酵素が作用して殺菌を行うことである. 一方, 酸素依存性の殺菌とは, 貪食に伴い酸素代謝が増大し, その結果, 産生されるスーパーオキシドアニオン(O2-)および, その代謝産物が関与する殺菌のことをいう1). O2-はNADPH oxidaseとよばれるスーパーオキシド産生酵素が貪食に伴って活性化されることにより産生される. 近年, O2-産生に関する研究は, NADPH oxidaseの酵素本体ならびに活性化機構について精力的に行われてきた. そして, NADPH oxidaseは複数の成分から構成される複合酵素系であり, 各成分どうしが刺激によって会合し, 活性型のNADPH oxidase複合体となることで, O2-を産生することが明らかとなった2~5).
Author 染谷, 明正
Author_xml – sequence: 1
  fullname: 染谷, 明正
  organization: 順天堂大学医学部第二生化学教室
BookMark eNo9kM1Kw0AUhQepYK1du_UFUuevycyyttYKRV10P0wmkzYhTUJSoS6LoIVuutKlK3UhiksRfJrY6mM40ioczrmXA9-Fuw1KcRJrAHYRrGHK8X6YBxniDNUQM0IboIwYoxaF0C6BMiSMWxRzuAWqeR64EGKGMUS8DA6WN6_F5K6YPH0_zBbX78Xk1qyL-4_Pt-ev-eVJo3XW2UvGgSdzXUxelo-z5XRutJhepRRa6SAZ74BNX0a5rq6zAnrtw16zY3VPj46bja4VYkSJxaDrcUVtl2OXSImkr2ymHN9Bjku1TSXyHNMwI0yVjTX3bVKvu9Kte9iRpALaK-xQe4GSURJHQaxFmJxnsTkrVEoy3dexQJwzASFikJjAwkzo1zjhjFJiQK0VKMxHsq9FmgVDmV0ImY0CFRni-pcCMUH-DP3XaiAzEUryA8gpfwo
ContentType Journal Article
Copyright 日本炎症・再生医学会
Copyright_xml – notice: 日本炎症・再生医学会
CorporateAuthor 順天堂大学医学部第二生化学教室
CorporateAuthor_xml – name: 順天堂大学医学部第二生化学教室
DOI 10.2492/jsir1981.18.181
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
EISSN 1884-4006
EndPage 189
ExternalDocumentID cp3regen_1998_001803_002_0181_0189398443
article_jsir1981_18_3_18_3_181_article_char_ja
GroupedDBID ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
MOJWN
RJT
ID FETCH-LOGICAL-j2143-80bd9c46b92b3aa1afc68c7f717b4e64a1d72b38b3824c62e9f6355bab5d27a3
ISSN 0389-4290
IngestDate Wed Apr 09 06:17:36 EDT 2025
Wed Sep 03 06:27:16 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 3
Language Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j2143-80bd9c46b92b3aa1afc68c7f717b4e64a1d72b38b3824c62e9f6355bab5d27a3
OpenAccessLink https://www.jstage.jst.go.jp/article/jsir1981/18/3/18_3_181/_article/-char/ja
PageCount 9
ParticipantIDs medicalonline_journals_cp3regen_1998_001803_002_0181_0189398443
jstage_primary_article_jsir1981_18_3_18_3_181_article_char_ja
PublicationCentury 1900
PublicationDate 1998/05/30
PublicationDateYYYYMMDD 1998-05-30
PublicationDate_xml – month: 05
  year: 1998
  text: 1998/05/30
  day: 30
PublicationDecade 1990
PublicationTitle 炎症
PublicationTitleAlternate 炎症
PublicationYear 1998
Publisher 日本炎症・再生医学会
日本炎症学会
Publisher_xml – name: 日本炎症・再生医学会
– name: 日本炎症学会
References 21) Someya A, Yamashita T: Cytosolic factors involved in the activation of NADPH oxidase from guinea pig neutrophils. Arch. Biochem. Biophys. 284: 17-21, 1991.
6) Someya A, Nagaoka I, Yamashita T: Purification of the 260 kDa cytosolic complex involved in the superoxide production of guinea pig neutrophils. FEBS lett. 330: 215-218, 1993.
15) Volpp BD, Nauseef WM, Clark RA: Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242: 1295-1297, 1988.
39) Mizuki K, Kadomatsu K, Hata K, Ito T, Fan QW, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K, Sumimoto H: Functional modules and expression of mouse p 40phox and p 47phox SH3-domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur. J. Biochem. 251: 573-582, 1998.
40) Nakamura R, Sumimoto H, Mizuki K, Hata K, Ago T, Kitajima S, Takeshige K, Sakaki Y, Ito T: The PC motif: a novel and evolutionarily conserved sequence involved in interaction between p 40phox and p 47phox, SH3 domain-containing cytosolic fac-tors of the phagocyte NADPH oxidase. Eur.. J. Biochem. 251: 583-589, 1998.
29) Ito T, Nakamura R, Sumimoto H, Takeshige K, Sakaki Y: An SH3 domainmediated interaction between the phagocyte NADPH oxidase factors p 40phox and p 47phox. FEBS lett. 385: 229-232, 1996.
10) McPhail LC, Shirley PS, Clayton CC, Snyderman R: Activation of the respiratory burst enzyme from human neutrophils in a cell-free system: evidence for a soluble cofactor. J. Clin. Invest. 75: 1735-1739, 1985.
24) Zhan S, Vazquez N, Zhan S, Wientjes FB, Budarf ML, Schrock E, Ried T, Green ED, Chanock SJ: Genomic structure, chromosomal localization, start of transcription, and tissue expression of the human p 40-phox, a new component of the nicotinamide adenine dinuleotide phosphate-oxidase complex. Blood 88: 2714-2721, 1996.
19) Abo A, Boyhan A, West I, Thrasher AJ, Segal AW: Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p 67-phox, p 47-phox, p 21γacl, and cytochrome b-245. J. Biol. Chem. 267: 16767-16770, 1992.
4) DeLeo FR, Quinn MT: Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J. Leukocyte Biol. 60: 677-691, 1996.
38) Someya A, Nishijima K, Nunoi H, Irie S, Nagaoka I: Study on the superoxide-producing enzyme of eosinophils and neutrophils: comparison of the NADPH oxidase components. Arch. Biochem. Bio-phys. 345: 207-213, 1997.
23) Tsunawaki S, Mizunari H, Nagata M, Tatsuzawa O, Kuratsuji T: A novel cytosolic component, p 40phox, of respiratory burst oxidase associates with p 67phox and is absent in patients with chronic granulomatous disease who lack p 67phox. Biochem. Biophys. Res. Commun. 199: 1378-1387, 1994.
1) Babior BM: Oxygen-dependent microbial killing by phagocytes. N. Engl. J. Med. 298: 659-668, 1978.
30) Sathyamoorthy M, Mendez ID, Adams AG, Leto TL: p 40phox down-regulates NADPH oxidase activity through interactions with its SH3 domain. J. Biol. Chem. 272: 9141-9146, 1997.
27) Fuchs A, Dagher MC, Vignais PV: Mapping the domains of interaction of p 40phox with both p 47phox and p 67phox of the neutrophil oxidase complex using the two-hybrid system. J. Biol. Chem. 270: 5695-5697, 1995.
32) Leto TL, Adams AG, Mendez ID: Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc. Natl. Acad. Sci. USA 91: 10650-10654, 1994.
36) Uhlinger DJ, Taylor KL, Lambeth JD: p 67-phox enhances the binding of p 47-phox to the human neutrophil respiratory burst oxidase complex. J. Biol. Chem. 269: 22095-22098, 1994.
14) Nunoi H, Rotrosen D, Gallin JI, Malech HL: Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242: 1298-1301, 1988.
35) Wientjes FB, Panayotou G, Reeves E, Segal AW: Interactions between cytosolic components of the NADPH oxidase: p 40phox interacts with both p 67phox and p 47phox. Biochem. J. 317: 919-924, 1996.
22) Wientjes FB, Hsuan JJ, Totty NF, Segal AW: p 40phox a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domain. Biochem J. 296: 557-561, 1993.
2) Morel F, Doussiere J, Vignais PV : The superox-ide-generating oxidase of phagocytic cells: physiological, molecular and pathological aspects. Eur. J. Biochem. 201: 523-546, 1991.
26) Sumimoto H, Kage Y, Nunoi H, Sakaki H, Nose T, Fukumaki Y, Ohno M, Minakami S, Takeshige K: Role of Src Homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc. Natl. Acad. USA 91: 5345-5349, 1994.
9) Heyneman RA, Vercauteren RE: Activation of a NADPH oxidase from horse polymorphonuclear leukocytes in a cell-free system. J. Leukocyte Biol. 36: 751-759, 1984.
13) Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ: Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91, 000 and 22, 000. J. Clin. Invest. 80: 732-742, 1987.
16) Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW: Activation of the NADPH oxidase involves the small GTP-binding protein p 21racl. Nature 353: 668-670, 1991.
20) Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ: Association of a Ras-related protein with cytochrome b of human neu-trophils. Nature 342: 198-200, 1989.
17) Mizuno T, Kaibuchi K, Ando S. Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I, Takai Y: Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J. Biol. Chem. 267: 10215-10218, 1992.
18) Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH: Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256: 1459-1462, 1992.
3) Thrasher AJ, Keep NH, Wientjes F, Segal AW: Chronic granulomatous disease. Biochim. Biophys. Acta 1227: 1-24, 1994.
7) Someya A, Nagaoka I, Nunoi H, Yamashita T: Translocation of guinea pig p40-phox during activation of NADPH oxidase. Biochim. Biophys. Acta 1277: 217-225, 1996.
12) Segal AW, Jones OTG: Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276: 515-517, 1978.
25) Fuchs A, Bouin AP, Rabilloud T, Vignais PV: The 40-kDa component of the phagocyte NADPH oxidase (p 40 phox) is phosphorylated during activation in differentiated HL60 cells. Eur. J. Biochem. 249: 531-539, 1997.
33) Diekmann D, Abo A, Johnston C, Segal AW, Hall A: Interaction of rac with p 67phox and regulation of phagocytic NADPH oxidase activity. Science 265: 531-533, 1994.
11) Curnutte JT: Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell free system. J. Clin. Invest. 75: 1740-1743, 1985.
28) Fuchs A, Dagher MC, Faure J, Vignais PV: Topological organization of the cytosolic activating complex of the superoxide-generating NAD-PH-oxidase: pinpointing the sites of interaction between p 47phox, p 67phox and p 40phox using the two hybrid system. Biochem. Biophys. Acta 1312: 39-47, 1996.
31) Finan P, Shimizu Y, Gout I, Hsuan J, Truong O, Butcher C, Bennett P, Waterfield MD, Kellie S: An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J. Biol.Chem. 269: 13752-13755, 1994.
34) Nisimoto Y, Freeman JLR, Motalebi SA, Hirshberg M, Lambeth JD: Rac binding to p 67phox: structural basis for interactions of the racl effector region and insert region with components of the respiratory burst oxidase. J. Biol. Chem. 272: 18834-18841, 1997.
37) Tsunawaki S, Kagara S, Yoshikawa K, Yoshida LS, Kuratsuji T, Namiki H: Involvement of p 40phox in activation of phagocyte NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p 67phox. J. Exp. Med. 184: 893-902, 1996.
8) Bromberg Y, Pick E: Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell free system derived from macrophages. Cell. Immunol. 88: 213-221, 1984.
5) Leusen JHW, Verhoeven AJ, Roos D: Interactions between the components of the human NADPH oxidase : intrigues in the phox family. J. Lab. Clin. Med. 128: 461-476, 1996.
References_xml – reference: 40) Nakamura R, Sumimoto H, Mizuki K, Hata K, Ago T, Kitajima S, Takeshige K, Sakaki Y, Ito T: The PC motif: a novel and evolutionarily conserved sequence involved in interaction between p 40phox and p 47phox, SH3 domain-containing cytosolic fac-tors of the phagocyte NADPH oxidase. Eur.. J. Biochem. 251: 583-589, 1998.
– reference: 22) Wientjes FB, Hsuan JJ, Totty NF, Segal AW: p 40phox a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domain. Biochem J. 296: 557-561, 1993.
– reference: 5) Leusen JHW, Verhoeven AJ, Roos D: Interactions between the components of the human NADPH oxidase : intrigues in the phox family. J. Lab. Clin. Med. 128: 461-476, 1996.
– reference: 28) Fuchs A, Dagher MC, Faure J, Vignais PV: Topological organization of the cytosolic activating complex of the superoxide-generating NAD-PH-oxidase: pinpointing the sites of interaction between p 47phox, p 67phox and p 40phox using the two hybrid system. Biochem. Biophys. Acta 1312: 39-47, 1996.
– reference: 24) Zhan S, Vazquez N, Zhan S, Wientjes FB, Budarf ML, Schrock E, Ried T, Green ED, Chanock SJ: Genomic structure, chromosomal localization, start of transcription, and tissue expression of the human p 40-phox, a new component of the nicotinamide adenine dinuleotide phosphate-oxidase complex. Blood 88: 2714-2721, 1996.
– reference: 6) Someya A, Nagaoka I, Yamashita T: Purification of the 260 kDa cytosolic complex involved in the superoxide production of guinea pig neutrophils. FEBS lett. 330: 215-218, 1993.
– reference: 17) Mizuno T, Kaibuchi K, Ando S. Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I, Takai Y: Regulation of the superoxide-generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J. Biol. Chem. 267: 10215-10218, 1992.
– reference: 31) Finan P, Shimizu Y, Gout I, Hsuan J, Truong O, Butcher C, Bennett P, Waterfield MD, Kellie S: An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J. Biol.Chem. 269: 13752-13755, 1994.
– reference: 20) Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ: Association of a Ras-related protein with cytochrome b of human neu-trophils. Nature 342: 198-200, 1989.
– reference: 37) Tsunawaki S, Kagara S, Yoshikawa K, Yoshida LS, Kuratsuji T, Namiki H: Involvement of p 40phox in activation of phagocyte NADPH oxidase through association of its carboxyl-terminal, but not its amino-terminal, with p 67phox. J. Exp. Med. 184: 893-902, 1996.
– reference: 36) Uhlinger DJ, Taylor KL, Lambeth JD: p 67-phox enhances the binding of p 47-phox to the human neutrophil respiratory burst oxidase complex. J. Biol. Chem. 269: 22095-22098, 1994.
– reference: 32) Leto TL, Adams AG, Mendez ID: Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc. Natl. Acad. Sci. USA 91: 10650-10654, 1994.
– reference: 10) McPhail LC, Shirley PS, Clayton CC, Snyderman R: Activation of the respiratory burst enzyme from human neutrophils in a cell-free system: evidence for a soluble cofactor. J. Clin. Invest. 75: 1735-1739, 1985.
– reference: 1) Babior BM: Oxygen-dependent microbial killing by phagocytes. N. Engl. J. Med. 298: 659-668, 1978.
– reference: 33) Diekmann D, Abo A, Johnston C, Segal AW, Hall A: Interaction of rac with p 67phox and regulation of phagocytic NADPH oxidase activity. Science 265: 531-533, 1994.
– reference: 3) Thrasher AJ, Keep NH, Wientjes F, Segal AW: Chronic granulomatous disease. Biochim. Biophys. Acta 1227: 1-24, 1994.
– reference: 7) Someya A, Nagaoka I, Nunoi H, Yamashita T: Translocation of guinea pig p40-phox during activation of NADPH oxidase. Biochim. Biophys. Acta 1277: 217-225, 1996.
– reference: 15) Volpp BD, Nauseef WM, Clark RA: Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242: 1295-1297, 1988.
– reference: 8) Bromberg Y, Pick E: Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell free system derived from macrophages. Cell. Immunol. 88: 213-221, 1984.
– reference: 9) Heyneman RA, Vercauteren RE: Activation of a NADPH oxidase from horse polymorphonuclear leukocytes in a cell-free system. J. Leukocyte Biol. 36: 751-759, 1984.
– reference: 25) Fuchs A, Bouin AP, Rabilloud T, Vignais PV: The 40-kDa component of the phagocyte NADPH oxidase (p 40 phox) is phosphorylated during activation in differentiated HL60 cells. Eur. J. Biochem. 249: 531-539, 1997.
– reference: 21) Someya A, Yamashita T: Cytosolic factors involved in the activation of NADPH oxidase from guinea pig neutrophils. Arch. Biochem. Biophys. 284: 17-21, 1991.
– reference: 26) Sumimoto H, Kage Y, Nunoi H, Sakaki H, Nose T, Fukumaki Y, Ohno M, Minakami S, Takeshige K: Role of Src Homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc. Natl. Acad. USA 91: 5345-5349, 1994.
– reference: 35) Wientjes FB, Panayotou G, Reeves E, Segal AW: Interactions between cytosolic components of the NADPH oxidase: p 40phox interacts with both p 67phox and p 47phox. Biochem. J. 317: 919-924, 1996.
– reference: 14) Nunoi H, Rotrosen D, Gallin JI, Malech HL: Two forms of autosomal chronic granulomatous disease lack distinct neutrophil cytosol factors. Science 242: 1298-1301, 1988.
– reference: 13) Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ: Purified cytochrome b from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91, 000 and 22, 000. J. Clin. Invest. 80: 732-742, 1987.
– reference: 23) Tsunawaki S, Mizunari H, Nagata M, Tatsuzawa O, Kuratsuji T: A novel cytosolic component, p 40phox, of respiratory burst oxidase associates with p 67phox and is absent in patients with chronic granulomatous disease who lack p 67phox. Biochem. Biophys. Res. Commun. 199: 1378-1387, 1994.
– reference: 39) Mizuki K, Kadomatsu K, Hata K, Ito T, Fan QW, Kage Y, Fukumaki Y, Sakaki Y, Takeshige K, Sumimoto H: Functional modules and expression of mouse p 40phox and p 47phox SH3-domain-containing proteins involved in the phagocyte NADPH oxidase complex. Eur. J. Biochem. 251: 573-582, 1998.
– reference: 29) Ito T, Nakamura R, Sumimoto H, Takeshige K, Sakaki Y: An SH3 domainmediated interaction between the phagocyte NADPH oxidase factors p 40phox and p 47phox. FEBS lett. 385: 229-232, 1996.
– reference: 30) Sathyamoorthy M, Mendez ID, Adams AG, Leto TL: p 40phox down-regulates NADPH oxidase activity through interactions with its SH3 domain. J. Biol. Chem. 272: 9141-9146, 1997.
– reference: 18) Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH: Cytochrome b558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256: 1459-1462, 1992.
– reference: 19) Abo A, Boyhan A, West I, Thrasher AJ, Segal AW: Reconstitution of neutrophil NADPH oxidase activity in the cell-free system by four components: p 67-phox, p 47-phox, p 21γacl, and cytochrome b-245. J. Biol. Chem. 267: 16767-16770, 1992.
– reference: 38) Someya A, Nishijima K, Nunoi H, Irie S, Nagaoka I: Study on the superoxide-producing enzyme of eosinophils and neutrophils: comparison of the NADPH oxidase components. Arch. Biochem. Bio-phys. 345: 207-213, 1997.
– reference: 2) Morel F, Doussiere J, Vignais PV : The superox-ide-generating oxidase of phagocytic cells: physiological, molecular and pathological aspects. Eur. J. Biochem. 201: 523-546, 1991.
– reference: 4) DeLeo FR, Quinn MT: Assembly of the phagocyte NADPH oxidase: molecular interaction of oxidase proteins. J. Leukocyte Biol. 60: 677-691, 1996.
– reference: 11) Curnutte JT: Activation of human neutrophil nicotinamide adenine dinucleotide phosphate, reduced (triphosphopyridine nucleotide, reduced) oxidase by arachidonic acid in a cell free system. J. Clin. Invest. 75: 1740-1743, 1985.
– reference: 16) Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW: Activation of the NADPH oxidase involves the small GTP-binding protein p 21racl. Nature 353: 668-670, 1991.
– reference: 12) Segal AW, Jones OTG: Novel cytochrome b system in phagocytic vacuoles of human granulocytes. Nature 276: 515-517, 1978.
– reference: 27) Fuchs A, Dagher MC, Vignais PV: Mapping the domains of interaction of p 40phox with both p 47phox and p 67phox of the neutrophil oxidase complex using the two-hybrid system. J. Biol. Chem. 270: 5695-5697, 1995.
– reference: 34) Nisimoto Y, Freeman JLR, Motalebi SA, Hirshberg M, Lambeth JD: Rac binding to p 67phox: structural basis for interactions of the racl effector region and insert region with components of the respiratory burst oxidase. J. Biol. Chem. 272: 18834-18841, 1997.
SSID ssib002822019
ssib008531793
ssj0000493081
ssib000872115
ssib020873149
Score 1.3147902
Snippet 好中球は, 生体防御において重要な役割を果たしている. 好中球の主な機能は, 生体内に侵入した細菌, 微生物に向かって遊走し, これら侵入物を貪食した後, 殺菌することである. 好中球の殺菌機構は, 大きく酸素非依存性と酸素依存性の二つにわけられている. 酸素非依存性の殺菌とは, 食胞が顆粒と融合した後,...
SourceID medicalonline
jstage
SourceType Publisher
StartPage 181
Title 新たに見出した好中球NADPH oxidaseの構成成分p40-phox
URI https://www.jstage.jst.go.jp/article/jsir1981/18/3/18_3_181/_article/-char/ja
http://mol.medicalonline.jp/en/journal/download?GoodsID=cp3regen/1998/001803/002&name=0181-0189j
Volume 18
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 炎症, 1998/05/30, Vol.18(3), pp.181-189
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Ni9NAFA9lvQgiiorrFz04J0lNMpP5OIgk3SxFcVFYYW9hJklxC25LtwuLtyLowl72pEdP6kEUjyL419RW_wSPvplJ2uy6B1ehTF-T15l582be_F4y88ZxbnoqB9SuArfA-mmVlNyVgBPcroSRJ3OiArPk_8Ea7Twm9zbCjUbjV23V0s5ItbJnx-4r-RetwjXQq94lewLNzjOFC0CDfiEFDUP6VzpGCUWCothDCQZIiMRqSUQxSjiKKOJAhAgc_jiqeFiNOURRiOIVlBAUAz8QDAkPcbwWrTzs3OrvbuYwy1WZJrq8iJlMIWuuWRdEqAlOB8RzB0_6u3XUq7PlAeKJyR_o-eRnJFhFAuv6ghwx0zo3V7nhp7pWEV48nLC79cLqPYvuToadaVE00UZR-88CjQwYxbY9oNJWVlI2A2-Xt3Rp1LRHG4moZiYBcrkwq9pSC2vGOSfgGXv0eDu_eAxgjLZvD40p53_fHml0dGrRkRX11LK9OfQF91s-b83_dyhed9kb0ooz9XmKq8RPq9t6U13aA2R_CkaDWWBw_1EdGGvPvAZkAcfV4-YDyKpb1gD4sV860j3r92HPnNA7bx4b10qLcfuIEAC-euCK6BgTZ57a14M2TEsNaa2fc86WLlIzsiKcdxo9ecGJZ68-T8ZvJuMPP9_tT19-nYxfw8_p22_fv3z8cfDc9Ndm2V8n40-z9_uzvQP4TPdeVD3yorO-mqy3O255_ofbCwDGA3hSucgIVSJQWEpfdjPKM9ZlPlOkoET6OYM7HD4ByWhQiK6Gz0qqMA-YxJecpa3-VnHZaUolfcpYlqmCkYyDBQqYyjMvU6Kb41wuO3dsC6QDG-MlPZkWl527hxouLY3EdpoN8LAAM5Hq0aEXkHIPw1eQ6kB5OhFYcELwlf-swVXn9GL8XXOWRsOd4jrA5ZG6YXrWb_n7osc
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E6%96%B0%E3%81%9F%E3%81%AB%E8%A6%8B%E5%87%BA%E3%81%97%E3%81%9F%E5%A5%BD%E4%B8%AD%E7%90%83NADPH+oxidase%E3%81%AE%E6%A7%8B%E6%88%90%E6%88%90%E5%88%86p40-phox&rft.jtitle=%E7%82%8E%E7%97%87&rft.au=%E6%9F%93%E8%B0%B7%2C+%E6%98%8E%E6%AD%A3&rft.date=1998-05-30&rft.pub=%E6%97%A5%E6%9C%AC%E7%82%8E%E7%97%87%E3%83%BB%E5%86%8D%E7%94%9F%E5%8C%BB%E5%AD%A6%E4%BC%9A&rft.issn=0389-4290&rft.eissn=1884-4006&rft.volume=18&rft.issue=3&rft.spage=181&rft.epage=189&rft_id=info:doi/10.2492%2Fjsir1981.18.181&rft.externalDocID=article_jsir1981_18_3_18_3_181_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0389-4290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0389-4290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0389-4290&client=summon