A new nonscanning confocal microscopy module for functional voltage-sensitive dye and Ca2+ imaging of neuronal circuit activity
Recent advances in fluorescent confocal microscopy and voltage-sensitive and Ca(2+) dyes have vastly improved our ability to image neuronal circuits. However, existing confocal systems are not fast enough or too noisy for many live-cell functional imaging studies. Here, we describe and demonstrate t...
Saved in:
Published in | Journal of neurophysiology Vol. 110; no. 2; p. 553 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
01.07.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 1522-1598 1522-1598 |
DOI | 10.1152/jn.00856.2012 |
Cover
Loading…
Summary: | Recent advances in fluorescent confocal microscopy and voltage-sensitive and Ca(2+) dyes have vastly improved our ability to image neuronal circuits. However, existing confocal systems are not fast enough or too noisy for many live-cell functional imaging studies. Here, we describe and demonstrate the function of a novel, nonscanning confocal microscopy module. The optics, which are designed to fit the standard camera port of the Olympus BX51WI epifluorescent microscope, achieve a high signal-to-noise ratio (SNR) at high temporal resolution, making this configuration ideal for functional imaging of neuronal activities such as the voltage-sensitive dye (VSD) imaging. The optics employ fixed 100- × 100-pinhole arrays at the back focal plane (optical conjugation plane), above the tube lens of a usual upright microscope. The excitation light travels through these pinholes, and the fluorescence signal, emitted from subject, passes through corresponding pinholes before exciting the photodiodes of the imager: a 100- × 100-pixel metal-oxide semiconductor (MOS)-type pixel imager with each pixel corresponding to a single 100- × 100-μm photodiode. This design eliminated the need for a scanning device; therefore, acquisition rate of the imager (maximum rate of 10 kHz) is the only factor limiting acquisition speed. We tested the application of the system for VSD and Ca(2+) imaging of evoked neuronal responses on electrical stimuli in rat hippocampal slices. The results indicate that, at least for these applications, the new microscope maintains a high SNR at image acquisition rates of ≤0.3 ms per frame. |
---|---|
Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ISSN: | 1522-1598 1522-1598 |
DOI: | 10.1152/jn.00856.2012 |