Averages along Polynomial Sequences in Discrete Nilpotent Lie Groups Singular Radon Transforms

A class of interesting problems arises in studying averages of functions along polynomial sequences in discrete nilpotent groups. More precisely, assume$\mathbb{G}$is a discrete nilpotent group of step$d\ge 1$and$A:\mathbb{Z}\to \mathbb{G}$is a polynomial sequence (see Definition 1.1 below), and con...

Full description

Saved in:
Bibliographic Details
Published inAdvances in Analysis Vol. 50; pp. 146 - 188
Main Authors Phong, D. H, Wainger, Stephen, Fefferman, Charles, Ionescu, Alexandru D
Format Book Chapter
LanguageEnglish
Published United States Princeton University Press 05.01.2014
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:A class of interesting problems arises in studying averages of functions along polynomial sequences in discrete nilpotent groups. More precisely, assume$\mathbb{G}$is a discrete nilpotent group of step$d\ge 1$and$A:\mathbb{Z}\to \mathbb{G}$is a polynomial sequence (see Definition 1.1 below), and consider the following problems:¹ Problem 1.(L²boundedness of maximal Radon transforms) Assume $f:\mathbb{G}\to \mathbb{C}$ is a function and let \[{\mathcal M}f(g)=\underset{N\ge 0}{\mathop{\sup }}\,\frac{1}{2N+1}\sum\limits_{|n|\le N}^{{}}{|f({{A}^{-1}}(n)\cdot g)|,\quad g\in \mathbb{G}.}\] Then \[\parallel\mathcal Mf{{\parallel }_{{{L}^{2}}(\mathbb{G})}}\lesssim \parallel f{{\parallel }_{{{L}^{2}}(\mathbb{G})}}.\] Problem 2.(L²pointwise ergodic theorems) Assume $\mathbb{G}$ acts by measure-preserving transformations on a probability space X, $f\in {{L}^{2}}(X)$ , and let \[{{A}_{N}}f(x)=\frac{1}{2N+1}\sum\limits_{|n|\le N}^{{}}{f({{A}^{-1}}(n)\cdot x),\quad x\in X.}\] Then the sequence ANf converges almost everywhere in X as $N\to \infty $. Problem 3.(L²boundedness of singular
ISBN:0691159416
9780691159416
DOI:10.1515/9781400848935-008