Averages along Polynomial Sequences in Discrete Nilpotent Lie Groups Singular Radon Transforms
A class of interesting problems arises in studying averages of functions along polynomial sequences in discrete nilpotent groups. More precisely, assume$\mathbb{G}$is a discrete nilpotent group of step$d\ge 1$and$A:\mathbb{Z}\to \mathbb{G}$is a polynomial sequence (see Definition 1.1 below), and con...
Saved in:
Published in | Advances in Analysis Vol. 50; pp. 146 - 188 |
---|---|
Main Authors | , , , |
Format | Book Chapter |
Language | English |
Published |
United States
Princeton University Press
05.01.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Summary: | A class of interesting problems arises in studying averages of functions along polynomial sequences in discrete nilpotent groups. More precisely, assume$\mathbb{G}$is a discrete nilpotent group of step$d\ge 1$and$A:\mathbb{Z}\to \mathbb{G}$is a polynomial sequence (see Definition 1.1 below), and consider the following problems:¹
Problem 1.(L²boundedness of maximal Radon transforms) Assume
$f:\mathbb{G}\to \mathbb{C}$
is a function and let
\[{\mathcal M}f(g)=\underset{N\ge 0}{\mathop{\sup }}\,\frac{1}{2N+1}\sum\limits_{|n|\le N}^{{}}{|f({{A}^{-1}}(n)\cdot g)|,\quad g\in \mathbb{G}.}\]
Then
\[\parallel\mathcal Mf{{\parallel }_{{{L}^{2}}(\mathbb{G})}}\lesssim \parallel f{{\parallel }_{{{L}^{2}}(\mathbb{G})}}.\]
Problem 2.(L²pointwise ergodic theorems) Assume
$\mathbb{G}$
acts by measure-preserving transformations on a probability space X,
$f\in {{L}^{2}}(X)$
, and let
\[{{A}_{N}}f(x)=\frac{1}{2N+1}\sum\limits_{|n|\le N}^{{}}{f({{A}^{-1}}(n)\cdot x),\quad x\in X.}\]
Then the sequence ANf converges almost everywhere in X as
$N\to \infty $.
Problem 3.(L²boundedness of singular |
---|---|
ISBN: | 0691159416 9780691159416 |
DOI: | 10.1515/9781400848935-008 |