飼料の魚粉代替が2種のブリ抗菌ペプチド遺伝子発現量に及ぼす影響

本研究では,植物原料による魚粉の代替がブリの抗菌ペプチド遺伝子発現量に及ぼす影響を明らかにするため,2種の抗菌ペプチド(ヘプシジンとピスシジン)の組織分布と,魚粉代替飼料で飼育したブリの抗菌ペプチド遺伝子発現量を測定した。組織分布観察では,脳,鰓,頭腎,腸,白血球,肝臓,表皮および脾臓を採取し,飼育試験では,魚粉を大豆油粕(SBM)で段階的に代替した飼料(SBM0, SBM15, SBM30)で5週間飼育し,肝臓,頭腎および脾臓の抗菌ペプチド遺伝子発現量を RT-qPCR で測定した。ヘプシジンは肝臓で,ピスシジンは脾臓で最も発現していた。また,5週間の飼育後,SBM15 区と SBM30 区...

Full description

Saved in:
Bibliographic Details
Published in水産増殖 Vol. 72; no. 1; pp. 9 - 20
Main Authors 松本, 暢久, 泉水, 彩花, 深田, 陽久
Format Journal Article
LanguageEnglish
Japanese
Published 日本水産増殖学会 2024
Subjects
Online AccessGet full text
ISSN0371-4217
2185-0194
DOI10.11233/aquaculturesci.72.9

Cover

Abstract 本研究では,植物原料による魚粉の代替がブリの抗菌ペプチド遺伝子発現量に及ぼす影響を明らかにするため,2種の抗菌ペプチド(ヘプシジンとピスシジン)の組織分布と,魚粉代替飼料で飼育したブリの抗菌ペプチド遺伝子発現量を測定した。組織分布観察では,脳,鰓,頭腎,腸,白血球,肝臓,表皮および脾臓を採取し,飼育試験では,魚粉を大豆油粕(SBM)で段階的に代替した飼料(SBM0, SBM15, SBM30)で5週間飼育し,肝臓,頭腎および脾臓の抗菌ペプチド遺伝子発現量を RT-qPCR で測定した。ヘプシジンは肝臓で,ピスシジンは脾臓で最も発現していた。また,5週間の飼育後,SBM15 区と SBM30 区では SBM0 区と比較し,脾臓および頭腎でのピスシジン遺伝子発現量が有意に低かった。以上のことから,ブリにおいて,飼料の低魚粉化と植物原料の高配合の一方もしくは両方により,抗菌ペプチド遺伝子の発現量が減少することが示唆された。
AbstractList 本研究では,植物原料による魚粉の代替がブリの抗菌ペプチド遺伝子発現量に及ぼす影響を明らかにするため,2種の抗菌ペプチド(ヘプシジンとピスシジン)の組織分布と,魚粉代替飼料で飼育したブリの抗菌ペプチド遺伝子発現量を測定した。組織分布観察では,脳,鰓,頭腎,腸,白血球,肝臓,表皮および脾臓を採取し,飼育試験では,魚粉を大豆油粕(SBM)で段階的に代替した飼料(SBM0, SBM15, SBM30)で5週間飼育し,肝臓,頭腎および脾臓の抗菌ペプチド遺伝子発現量を RT-qPCR で測定した。ヘプシジンは肝臓で,ピスシジンは脾臓で最も発現していた。また,5週間の飼育後,SBM15 区と SBM30 区では SBM0 区と比較し,脾臓および頭腎でのピスシジン遺伝子発現量が有意に低かった。以上のことから,ブリにおいて,飼料の低魚粉化と植物原料の高配合の一方もしくは両方により,抗菌ペプチド遺伝子の発現量が減少することが示唆された。
Author 松本, 暢久
泉水, 彩花
深田, 陽久
Author_xml – sequence: 1
  fullname: 松本, 暢久
– sequence: 1
  fullname: 泉水, 彩花
– sequence: 1
  fullname: 深田, 陽久
BookMark eNpVkM1KAlEAhS9hkJlv0CuM3d-ZucuQrEBoU6sWw3XmWg5mNaOLlsMsQhHGlaIRLdxEoVBLs3yYq07zFhlF0FmcA4ePszibIFW7rEkAthHMIYQJ2RHXDWE3qvWGJ327kjNwjq-BNEYm0yDiNAXSkBhIoxgZGyDr-y5ciXJETJ4Gp8lwuuz2VTBORoP4tTl_Gy7vZipo4_hxvGpV2FXh07LV-4zaKhyosKfCQIXNJJjMp_eLUSfuT-LoI7mNVPC8iFoqmKqgv3h_SR5mW2C9LKq-zP5mBpwU9o7zB1rxaP8wv1vUXGTqQjMQsxk2JWKUUMGdMmdmiRiS6BSaNsWUSVgSJd2AXDChc4h1B2FOdeI4KwqRDCj87Lp-XZxJ68qrXAjvxhJevWJXpfX_IMvAFvo2_gfY58KzXEG-ALyLhng
ContentType Journal Article
Copyright 日本水産増殖学会
Copyright_xml – notice: 日本水産増殖学会
DOI 10.11233/aquaculturesci.72.9
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
EISSN 2185-0194
EndPage 20
ExternalDocumentID article_aquaculturesci_72_1_72_9_article_char_ja
GroupedDBID 123
ACGFS
ALMA_UNASSIGNED_HOLDINGS
JSF
KQ8
RJT
ID FETCH-LOGICAL-j186a-715c528e15434a9df958b37e36408c4245e0bab6709a5a69026d129463dd7e313
ISSN 0371-4217
IngestDate Wed Sep 03 06:30:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed false
IsScholarly false
Issue 1
Language English
Japanese
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-j186a-715c528e15434a9df958b37e36408c4245e0bab6709a5a69026d129463dd7e313
OpenAccessLink https://www.jstage.jst.go.jp/article/aquaculturesci/72/1/72_9/_article/-char/ja
PageCount 12
ParticipantIDs jstage_primary_article_aquaculturesci_72_1_72_9_article_char_ja
PublicationCentury 2000
PublicationDate 2024
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – year: 2024
  text: 2024
PublicationDecade 2020
PublicationTitle 水産増殖
PublicationTitleAlternate 水産増殖
PublicationYear 2024
Publisher 日本水産増殖学会
Publisher_xml – name: 日本水産増殖学会
References Jirapongpairoj, W., K. Kobayashi, Y. Fukuda, T. Takano, T. Sakai, T. Matsuyama, C. Nakayasu, R. Nozak, I. Hirono and H. Kondo (2015) Development of consensus qPCR primers to detect cytokine genes in three amberjack species: Seriola quinqueradiata, S. lalandi and S. dumerili. Fish. Sci., 81, 907-914.
Niu, S. F., Y. Jin, X. Xu, Y. Qiao, Y. Wu, Y. Mao, Y-Q. Su and J. Wang (2013) Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans. Fish Shellfish Immunol., 35, 513-524.
Shimeno, S., H. Hosokawa, H. Morie, M. Takeda and M. Ukawa (1992b) Inclusion of defatted soybean meal to diet for young yellowtail. Suisanzoshoku, 40, 51-56. (In Japanese with English abstract)
Shimeno, S., H. Hosokawa, M. Kumon, T. Masumoto and M. Ukawa (1992a) Inclusion of defatted soybean meal in diet for fingerling yellowtail. Nippon Suisan Gakkaishi, 58, 1319-1325. (In Japanese with English abstract)
Zapata, A., B. Diez, T. Cejalvo, C. Gutiérrez-de Frías and A. Cortés (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol., 20, 126-136.
Douglas, S. E., J. W. Gallant., R. S. Liebscher, A. Dacanay and S. C. M. Tsoi (2003) Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Dev. Comp. Immunol., 27, 589-601.
Rodrigues, P. N. S., S. Vázquez-Dorado, J. V. Nenes and J. M. Wilson (2006) Dual function of fish hepcidin: Response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Dev. Comp. Immunol., 30, 1156-1167.
Seong, T., J. Matsuyoshi, Y, Haga, N. Kabeya, R. Kitagima, J. Miyahara, T. Koshiishi and S. Satoh (2022) Utilization of microalgae Schizochytrium sp. in non-fish meal, non-fish oil diet for yellowtail (Seriola quinqueradiata). Aquac. Res., 53, 2042-2052.
Watanabe, T. (2009) Nutrition and nutrient requirements of fish. IN “Nutrition and Feeding in Fish and Crustaceans” ed. by T. Watanabe), Kouseisha Kouseikaku Co., Ltd., Tokyo, pp. 60-168.
Uribe, C., H. Folch, R. Enriquez and G. Moran (2011) Innate and adaptive immunity in teleost fish: A review. Vet. Med., 56, 486-503.
Matsumoto, Y., L. X. Thao, K. Morioka, H. Fukada and T. Masumoto (2017) Effects of graded levels of taurine supplement to the no-fishmeal diet on the growth and physiology in juvenile yellowtail Seriola quinqueradiata. Aquac. Sci., 65, 239-246.
Fisheries Agency (2013) https://www.jfa.maff.go.jp/j/kikaku/wpaper/h25/ accessed on 9 Fed. 2023 (in Japanese)
Aas, T. S., T. Ytrestøyl and T. Åsgård (2019) Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: An update for 2016. Aquac. Rep., 15, 100216.
Khosravi, S., R. Samad, H. Mikaël, F. Vincent, L. C. Rong, D. B. H. Thi, J. J. Bum and L. K. Jun (2015) Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major. Fish Shellfish Immunol., 45, 858-868.
Zhang, L. J. and R. L. Gallo (2016) Antimicrobial peptides. Curr. Biol., 26, R14-R19.
Aoki, H., T. Watanabe, Y. Sanada, Y. Yamagata, K. Yamauchi and S. Satoh (2000) Use of alternate protein and lipid sources in practical feeds for yellowtail. Aquacult. Sci., 48, 81-90.
Ido, A., M-F-Z. Ali, T. Takahashi, C. Miura and T. Miura (2021) Growth of yellowtail (Seriola quinqueradiata) fed on a diet including partially or completely defatted black soldier fly (Hermetia illucens) larvae meal. Insects, 12, 772.
Fukada, H., A. Senzui, K, Kimoto, K, Tsuru, Y. Kiyabu (2023) Evaluation of the in vivo and in vitro interleukin-12 p40 and p35 subunit response in yellowtail (Seriola quinqueradiata) to heat-killed Lactobacillus plantarum strain L-137 (HK L-137) supplementation, and immersion challenge with Lactococcus garvieae. Fish shellfish Immunol Rep., 4, 100095.
Sun, B. J., H. X. Xie, Y. Song and P. Nie (2007) Gene structure of an antimicrobial peptide from mandarin fish, Siniperca chuatsi (Basilewsky), suggests that Moronecidins and Pleurocidins belong in one family: The piscidins. J. Fish Dis., 30, 335-343.
Watanabe, K., K. Ura, T. Yada, V. Kiron, S. Satoh and T. Watanabe (2000) Ebergy and protein requirements of yellowtail for maximum growth and maintenance of body weight. Fish Sci., 66, 1053-1061.
Senzui, A., T. Masumoto and H. Fukada (2020a) Effect of umami substances on feed intake and neuropeptide Y expression in yellowtail Seriola quinqueradiata. Aquac. Sci., 68, 159-162.
Iwashita, Y., T. Yamamoto, H. Furuita, T. Sugita and N. Suzuki (2008) Influence of certain soybean antinutritional factors supplemented to a casein-based semipurified diet on intestinal and liver morphology in fingerling rainbow trout Oncorhynchus mykiss. Fish. Sci., 74, 1075-1082.
Naylor, R. L., R. J. Goldburg, H. Mooney, M. Beveridge, J. Clay, C. Folke, N. Kautsky, J. Lubchenco, J. Primavera and M. Williams (1998) Nature's subsidies to shrimp and salmon farming. Science, 282, 883-884.
Ruchimat, T., T. Masumoto, H. Hosokawa and S. Shimeno (1997) Quantitative methionine requirement of yellowtail (Seriola quinqueradiata). Aquaculture, 150, 113-122.
Raju, S. V., P. Sarkar, P. Kumar and J. Arockiaraj (2021) Piscidin, fish antimicrobial peptide: structure, classification, properties, mechanism, gene regulation and therapeutical importance. Int. J. Pept. Res. Ther., 27, 91-107.
Lilleeng, E., M. K. Froystad, G. C. Ostby, E. C. Valen and A. Krogdahl (2007) Effects of diets containing soybean meal on trypsin mRNA expression and activity in Atlantic salmon (Salmo salar L). Comp. Biochem. Physiol. - A Mol. Integr. Physiol., 147, 25-36.
Bogevik, A. S., T. A. Samuelsen, T. Aspevik, O. H. Romarheim, T. S. Aas, T. Kalananthan and I. Rønnestad (2021) Disintegration stability of extruded fish feed affects gastric functions in Atlantic salmon (Salmo salar). Aquaculture, 543, 737006.
Masso-Silva, J. A. and G. Diamond (2014) Antimicrobial peptides from fish. Pharmaceuticals, 7, 265-310.
Zhang, J., L-p. Yu, M-f. Li and L. Sun (2014) Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol., 38, 127-134.
Takagi, S., H. Murata, T. Goto, H. Hatate, H. Yamashita, A. Takano and M. Ukawa (2013) Long-term feeding of the yellowtail Seriola quinqueradiata with soy protein concentrate-based non-fishmeal diet supplemented with taurine. Aquac. Sci., 61, 349-358.
Ministry of Agriculture, Forestry and Fisheries (2022) https://www.maff.go.jp/j/tokei/kekka_gaiyou/gyogyou_seisan/gyogyou_yousyoku/r3/index.html, accessed on 9 Feb. 2023 (in Japanese)
Takeda, M., S. Shimeno, H. Hosokawa, K. Amano, K. Ikeda and I. Inoue (1989) Effects of supplemental dietary oxidized oil and nutrient mixture on lipid peroxidation in red sea bream. Aquac. Sci., 37, 1-7. (In Japanese with English abstract)
Ministry of Agriculture, Forestry and Fisheries (2020) https://www.maff.go.jp/j/syouan/suisan/suisan_yobo/disease/gyobyou_higai_jyoukyou.html, accessed on 9 Feb. 2023 (in Japanese)
Pan, C. Y., T-Y. Tsai, B-C. Su, C-F. H and J-Y. Chen (2017) Study of the antimicrobial activity of tilapia piscidin 3 (TP3) and TP4 and their effects on immune functions in hybrid tilapia (Oreochromis spp.). PLoS ONE, 12, 1-23.
Buonocore, F., E. Randelli, D. Casani, S. Picchietti, M. C. Belardinelli, D. de Pascale, C. D. Santi and G. Scapigliati (2012) A piscidin-like antimicrobial peptide from the icefish Chionodraco hamatus (Perciformes: Channichthyidae): Molecular characterization, localization and bactericidal activity. Fish Shellfish Immunol., 33, 1183-1191.
Takagi, S., H. Murata, T. Goto, M. Endo, H. Yamashita and M. Ukawa (2008) Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate. Aquaculture, 280, 198-205.
Buonocore, F. (2011) Importance of fish antimicrobial peptides for aquaculture and biomedicine. J. Aquac. Res. Dev., 2, 1000105e.
Cuesta, A., J. Meseguer and M. Á. Esteban (2008) The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol. Immunol., 45, 2333-2342.
Fernández-Montero, A., S. Torrecillas, M. Izquierdo, M. J. Caballero, D. J. Milne, C. J. Secombes, J. Sweetman, P. Da Silva, F. Acosta and D. Montero (2019) Increased parasite resistance of greater amberjack (Seriola dumerili Risso 1810) juveniles fed a cMOS supplemented diet is associated with upregulation of a discrete set of immune genes in mucosal tissues. Fish Shellfish Immunol., 86, 35-45.
Yuan, X., G. Jiang, H. Cheng, X. Cao, H. Shi and W. Lui (2019) An evaluation of replacing fish meal with cottonseed meal protein hydrolysate in diet for juvenile blunt snout bream (Megalobrama amblycephala): Growth, antioxidant, innate immunity and disease resistance. Aquac. Nutr., 25, 1334-1344.
Mugwanya, M., M. A. O. Dawood, F. Kimera and H. Sewilam (2023) Replacement of fish meal with fermented plant proteins in the aquafeed industry: A systematic review and meta-analysis. Rev. Aquac., 15, 62-88.
Lai, Y., and R. L. Gallo (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends in Immunol., 30, 131-141.
FAO (2022) The state of world fisheries and aquaculture 2022. https://www.fao.org/documents/card/en/c/cc0461en
Bao, B., E. Peatman, P. Li, C. He and Z. Liu (2005) Catfish hepcidin gene is expressed in a wide range of tissues and exhibits tissue-specific upregulation after bacterial infection. Dev. Comp. Immunol., 29, 939-950.
Senzui, A., T. Masumoto and H. Fukada (2020b) Neuropeptide Y expression in response to sensory organ-detected fish meal soluble components and orally fed fish meal-based diet in yellowtail Seriola quinqueradiata. Aquaculture, 514, 734512.
Muncaster, S., K. Kraakman, O. Gibbons, K. Mensink, M. Forlenza, G. Jacobson and S. Bird (2018) Antimicrobial peptides within the yellowtail kingfish (Seriola lalandi). Dev. Comp. Immunol., 80, 67-80.
Cole, A. M.,
References_xml – reference: Senzui, A., T. Masumoto and H. Fukada (2020a) Effect of umami substances on feed intake and neuropeptide Y expression in yellowtail Seriola quinqueradiata. Aquac. Sci., 68, 159-162.
– reference: Fisheries Agency (2013) https://www.jfa.maff.go.jp/j/kikaku/wpaper/h25/ accessed on 9 Fed. 2023 (in Japanese)
– reference: Senzui, A., T. Masumoto and H. Fukada (2020b) Neuropeptide Y expression in response to sensory organ-detected fish meal soluble components and orally fed fish meal-based diet in yellowtail Seriola quinqueradiata. Aquaculture, 514, 734512.
– reference: Ministry of Agriculture, Forestry and Fisheries (2022) https://www.maff.go.jp/j/tokei/kekka_gaiyou/gyogyou_seisan/gyogyou_yousyoku/r3/index.html, accessed on 9 Feb. 2023 (in Japanese)
– reference: Sun, B. J., H. X. Xie, Y. Song and P. Nie (2007) Gene structure of an antimicrobial peptide from mandarin fish, Siniperca chuatsi (Basilewsky), suggests that Moronecidins and Pleurocidins belong in one family: The piscidins. J. Fish Dis., 30, 335-343.
– reference: Niu, S. F., Y. Jin, X. Xu, Y. Qiao, Y. Wu, Y. Mao, Y-Q. Su and J. Wang (2013) Characterization of a novel piscidin-like antimicrobial peptide from Pseudosciaena crocea and its immune response to Cryptocaryon irritans. Fish Shellfish Immunol., 35, 513-524.
– reference: Bao, B., E. Peatman, P. Li, C. He and Z. Liu (2005) Catfish hepcidin gene is expressed in a wide range of tissues and exhibits tissue-specific upregulation after bacterial infection. Dev. Comp. Immunol., 29, 939-950.
– reference: Ido, A., M-F-Z. Ali, T. Takahashi, C. Miura and T. Miura (2021) Growth of yellowtail (Seriola quinqueradiata) fed on a diet including partially or completely defatted black soldier fly (Hermetia illucens) larvae meal. Insects, 12, 772.
– reference: Aas, T. S., T. Ytrestøyl and T. Åsgård (2019) Utilization of feed resources in the production of Atlantic salmon (Salmo salar) in Norway: An update for 2016. Aquac. Rep., 15, 100216.
– reference: Watanabe, T. (2009) Nutrition and nutrient requirements of fish. IN “Nutrition and Feeding in Fish and Crustaceans” ed. by T. Watanabe), Kouseisha Kouseikaku Co., Ltd., Tokyo, pp. 60-168.
– reference: Pan, C. Y., T-Y. Tsai, B-C. Su, C-F. H and J-Y. Chen (2017) Study of the antimicrobial activity of tilapia piscidin 3 (TP3) and TP4 and their effects on immune functions in hybrid tilapia (Oreochromis spp.). PLoS ONE, 12, 1-23.
– reference: Lilleeng, E., M. K. Froystad, G. C. Ostby, E. C. Valen and A. Krogdahl (2007) Effects of diets containing soybean meal on trypsin mRNA expression and activity in Atlantic salmon (Salmo salar L). Comp. Biochem. Physiol. - A Mol. Integr. Physiol., 147, 25-36.
– reference: Yuan, X., G. Jiang, H. Cheng, X. Cao, H. Shi and W. Lui (2019) An evaluation of replacing fish meal with cottonseed meal protein hydrolysate in diet for juvenile blunt snout bream (Megalobrama amblycephala): Growth, antioxidant, innate immunity and disease resistance. Aquac. Nutr., 25, 1334-1344.
– reference: Mugwanya, M., M. A. O. Dawood, F. Kimera and H. Sewilam (2023) Replacement of fish meal with fermented plant proteins in the aquafeed industry: A systematic review and meta-analysis. Rev. Aquac., 15, 62-88.
– reference: Biswas, A., F. Takakuwa, S. Yamada, A. Matsuda, R. M. Saville, A. LeBlanc, J. A. Silverman, N. Sato and H. Tanaka (2020) Methanotroph (Methylococcus capsulatus, Bath) bacteria meal as an alternative protein source for Japanese yellowtail, Seriola quinqueradiata. Aquaculture, 529, 735700.
– reference: Uribe, C., H. Folch, R. Enriquez and G. Moran (2011) Innate and adaptive immunity in teleost fish: A review. Vet. Med., 56, 486-503.
– reference: Douglas, S. E., J. W. Gallant., R. S. Liebscher, A. Dacanay and S. C. M. Tsoi (2003) Identification and expression analysis of hepcidin-like antimicrobial peptides in bony fish. Dev. Comp. Immunol., 27, 589-601.
– reference: Naylor, R. L., R. J. Goldburg, H. Mooney, M. Beveridge, J. Clay, C. Folke, N. Kautsky, J. Lubchenco, J. Primavera and M. Williams (1998) Nature's subsidies to shrimp and salmon farming. Science, 282, 883-884.
– reference: Lai, Y., and R. L. Gallo (2009) AMPed up immunity: how antimicrobial peptides have multiple roles in immune defense. Trends in Immunol., 30, 131-141.
– reference: Khosravi, S., R. Samad, H. Mikaël, F. Vincent, L. C. Rong, D. B. H. Thi, J. J. Bum and L. K. Jun (2015) Effects of protein hydrolysates supplementation in low fish meal diets on growth performance, innate immunity and disease resistance of red sea bream Pagrus major. Fish Shellfish Immunol., 45, 858-868.
– reference: Masso-Silva, J. A. and G. Diamond (2014) Antimicrobial peptides from fish. Pharmaceuticals, 7, 265-310.
– reference: Shimeno, S., H. Hosokawa, T. Fujita, T. Mima and S. Ueno (1993) Sparing of fish meal by inclusion of combinations of several protein sources in yellowtail diet. Suisanzoshoku, 41, 135-140. (In Japanese with English abstract)
– reference: Ytrestøyl, T., T. S. Aas and T. Åsgård. (2015) Utilisation of feed resources in production of Atlantic salmon (Salmo salar) in Norway. Aquaculture, 448, 365-374.
– reference: Ruchimat, T., T. Masumoto, H. Hosokawa and S. Shimeno (1997) Quantitative methionine requirement of yellowtail (Seriola quinqueradiata). Aquaculture, 150, 113-122.
– reference: Seong, T., J. Matsuyoshi, Y, Haga, N. Kabeya, R. Kitagima, J. Miyahara, T. Koshiishi and S. Satoh (2022) Utilization of microalgae Schizochytrium sp. in non-fish meal, non-fish oil diet for yellowtail (Seriola quinqueradiata). Aquac. Res., 53, 2042-2052.
– reference: Zhang, L. J. and R. L. Gallo (2016) Antimicrobial peptides. Curr. Biol., 26, R14-R19.
– reference: Hosokawa, H., H. Kinoshita, T. Masumoto, S. Shimeno and R. Sakamoto (2001) Effect of amino acid supplementation on utilization of corn gluten and soy protein by yellowtail. Suisanzoshoku, 49, 369-375. (In Japaese with English abstract)
– reference: Shimeno, S., H. Hosokawa, M. Kumon, T. Masumoto and M. Ukawa (1992a) Inclusion of defatted soybean meal in diet for fingerling yellowtail. Nippon Suisan Gakkaishi, 58, 1319-1325. (In Japanese with English abstract)
– reference: Bogevik, A. S., T. A. Samuelsen, T. Aspevik, O. H. Romarheim, T. S. Aas, T. Kalananthan and I. Rønnestad (2021) Disintegration stability of extruded fish feed affects gastric functions in Atlantic salmon (Salmo salar). Aquaculture, 543, 737006.
– reference: Jirapongpairoj, W., K. Kobayashi, Y. Fukuda, T. Takano, T. Sakai, T. Matsuyama, C. Nakayasu, R. Nozak, I. Hirono and H. Kondo (2015) Development of consensus qPCR primers to detect cytokine genes in three amberjack species: Seriola quinqueradiata, S. lalandi and S. dumerili. Fish. Sci., 81, 907-914.
– reference: Buonocore, F. (2011) Importance of fish antimicrobial peptides for aquaculture and biomedicine. J. Aquac. Res. Dev., 2, 1000105e.
– reference: Cole, A. M., R. O. Darouiche, D. Legarda, N. Connell and G. Diamond (2000) Characterization of a fish antimicrobial peptide: Gene expression, subcellular localization, and spectrum of activity. Antimicrob. Agents Chemother., 44, 2039-2045.
– reference: Tomás, A., F. De La Gándara, A. García-Gomez, L. Pérez and M. Jover (2005) Utilization of soybean meal as an alternative protein source in the Mediterranean yellowtail, Seriola dumerili. Aquac. Nutr., 11, 333-340.
– reference: Fernández-Montero, A., S. Torrecillas, M. Izquierdo, M. J. Caballero, D. J. Milne, C. J. Secombes, J. Sweetman, P. Da Silva, F. Acosta and D. Montero (2019) Increased parasite resistance of greater amberjack (Seriola dumerili Risso 1810) juveniles fed a cMOS supplemented diet is associated with upregulation of a discrete set of immune genes in mucosal tissues. Fish Shellfish Immunol., 86, 35-45.
– reference: Matsumoto, Y., L. X. Thao, K. Morioka, H. Fukada and T. Masumoto (2017) Effects of graded levels of taurine supplement to the no-fishmeal diet on the growth and physiology in juvenile yellowtail Seriola quinqueradiata. Aquac. Sci., 65, 239-246.
– reference: Takeda, M., S. Shimeno, H. Hosokawa, K. Amano, K. Ikeda and I. Inoue (1989) Effects of supplemental dietary oxidized oil and nutrient mixture on lipid peroxidation in red sea bream. Aquac. Sci., 37, 1-7. (In Japanese with English abstract)
– reference: Iwashita, Y., T. Yamamoto, H. Furuita, T. Sugita and N. Suzuki (2008) Influence of certain soybean antinutritional factors supplemented to a casein-based semipurified diet on intestinal and liver morphology in fingerling rainbow trout Oncorhynchus mykiss. Fish. Sci., 74, 1075-1082.
– reference: Raju, S. V., P. Sarkar, P. Kumar and J. Arockiaraj (2021) Piscidin, fish antimicrobial peptide: structure, classification, properties, mechanism, gene regulation and therapeutical importance. Int. J. Pept. Res. Ther., 27, 91-107.
– reference: Buonocore, F., E. Randelli, D. Casani, S. Picchietti, M. C. Belardinelli, D. de Pascale, C. D. Santi and G. Scapigliati (2012) A piscidin-like antimicrobial peptide from the icefish Chionodraco hamatus (Perciformes: Channichthyidae): Molecular characterization, localization and bactericidal activity. Fish Shellfish Immunol., 33, 1183-1191.
– reference: Zapata, A., B. Diez, T. Cejalvo, C. Gutiérrez-de Frías and A. Cortés (2006) Ontogeny of the immune system of fish. Fish Shellfish Immunol., 20, 126-136.
– reference: Zhang, J., L-p. Yu, M-f. Li and L. Sun (2014) Turbot (Scophthalmus maximus) hepcidin-1 and hepcidin-2 possess antimicrobial activity and promote resistance against bacterial and viral infection. Fish Shellfish Immunol., 38, 127-134.
– reference: Rodrigues, P. N. S., S. Vázquez-Dorado, J. V. Nenes and J. M. Wilson (2006) Dual function of fish hepcidin: Response to experimental iron overload and bacterial infection in sea bass (Dicentrarchus labrax). Dev. Comp. Immunol., 30, 1156-1167.
– reference: Takagi, S., H. Murata, T. Goto, H. Hatate, H. Yamashita, A. Takano and M. Ukawa (2013) Long-term feeding of the yellowtail Seriola quinqueradiata with soy protein concentrate-based non-fishmeal diet supplemented with taurine. Aquac. Sci., 61, 349-358.
– reference: Ministry of Agriculture, Forestry and Fisheries (2020) https://www.maff.go.jp/j/syouan/suisan/suisan_yobo/disease/gyobyou_higai_jyoukyou.html, accessed on 9 Feb. 2023 (in Japanese)
– reference: Muncaster, S., K. Kraakman, O. Gibbons, K. Mensink, M. Forlenza, G. Jacobson and S. Bird (2018) Antimicrobial peptides within the yellowtail kingfish (Seriola lalandi). Dev. Comp. Immunol., 80, 67-80.
– reference: Shimeno, S., H. Hosokawa, H. Morie, M. Takeda and M. Ukawa (1992b) Inclusion of defatted soybean meal to diet for young yellowtail. Suisanzoshoku, 40, 51-56. (In Japanese with English abstract)
– reference: Watanabe, T., V. Viyakarn, H. Aoki, H. Tuda, H. Sakamoto, M. Maita, S. Satoh and T. Takeuchi (1994) Utilization of alternative protein sources as substitute for fish meal in a newly developed soft-dry pellet for yellowtail. Aquac. Sci., 42, 499-506.
– reference: Cuesta, A., J. Meseguer and M. Á. Esteban (2008) The antimicrobial peptide hepcidin exerts an important role in the innate immunity against bacteria in the bony fish gilthead seabream. Mol. Immunol., 45, 2333-2342.
– reference: Fukada, H., A. Senzui, K, Kimoto, K, Tsuru, Y. Kiyabu (2023) Evaluation of the in vivo and in vitro interleukin-12 p40 and p35 subunit response in yellowtail (Seriola quinqueradiata) to heat-killed Lactobacillus plantarum strain L-137 (HK L-137) supplementation, and immersion challenge with Lactococcus garvieae. Fish shellfish Immunol Rep., 4, 100095.
– reference: Masumoto, T., T. Ruchimat, Y. Ito, H. Hosokawa and S. Shimeno (1996) Amino acid availability values for several protein sources for yellowtail (Seriola quinqueradiata). Aquaculture, 146, 109-119.
– reference: Huang, T., W. Gu, B. Wang, Y. Zhang, L. Cui, Z. Yao, C. Zhao and G. Xu (2019) Identification and expression of the hepcidin gene from brown trout (Salmo trutta) and functional analysis of its synthetic peptide. Fish Shellfish Immunol., 87, 243-253.
– reference: Watanabe, K., K. Ura, T. Yada, V. Kiron, S. Satoh and T. Watanabe (2000) Ebergy and protein requirements of yellowtail for maximum growth and maintenance of body weight. Fish Sci., 66, 1053-1061.
– reference: Takagi, S., H. Murata, T. Goto, M. Endo, H. Yamashita and M. Ukawa (2008) Taurine is an essential nutrient for yellowtail Seriola quinqueradiata fed non-fish meal diets based on soy protein concentrate. Aquaculture, 280, 198-205.
– reference: Aoki, H., T. Watanabe, Y. Sanada, Y. Yamagata, K. Yamauchi and S. Satoh (2000) Use of alternate protein and lipid sources in practical feeds for yellowtail. Aquacult. Sci., 48, 81-90.
– reference: Pfaffl, M. W. (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res., 29, 900.
– reference: Magnadóttir, B. (2006) Innate immunity of fish (overview). Fish Shellfish Immunol., 20, 137-151.
– reference: FAO (2022) The state of world fisheries and aquaculture 2022. https://www.fao.org/documents/card/en/c/cc0461en
– reference: Nguyen, H. P., P. Khaoian, H. Fukada, N. Suzuki and T. Masumoto (2015) Feeding fermented soybean meal diet supplemented with taurine to yellowtail Seriola quinqueradiata affects growth performance and lipid digestion. Aquac. Res., 46, 1101-1110.
SSID ssj0000491389
ssib053387566
Score 1.9383591
Snippet ...
SourceID jstage
SourceType Publisher
StartPage 9
SubjectTerms Antimicrobial peptides
Fish meal
Soybean meal
Yellowtail
Title 飼料の魚粉代替が2種のブリ抗菌ペプチド遺伝子発現量に及ぼす影響
URI https://www.jstage.jst.go.jp/article/aquaculturesci/72/1/72_9/_article/-char/ja
Volume 72
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX 水産増殖, 2024, Vol.72(1), pp.9-20
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3Na9RAFA-1XvQgfuI3PTjHrMnkYzInmclmKYqC0ELBQ8jXCnuoWtqLt2UP0lJYTy2tiIdeRGlBj7Xas39H2q77X_jeZHa7iz1UhSW8zL735jfzksx7k3kTw7jnegXcByk1M54Fpus1E5PnLDPzgtIkgady08JE4cdP_OlZ9-GcNzdx5ufIqqWlxbSWvT4xr-RfrAplYFfMkv0Lyw6VQgHQYF84goXheCobk4gT4RAZksgnHH6cRA74hkRE6q864YJEjEhKAvjLJVIiPzJLIhuaOQgpMolAiQ3lgXBQaUUIgWKBIJyRKCBBA8QGPGJAME2ABk1wxAGnUqjqQ8LrJPIUMgsrBcRSQQSFUoEOFK1hSGTGuoQukaEmsKkekXUibZTiID62QhHRSotIV9XiqmZDvVSB9LGBfDgnqTqkruoHIiQixAtPnQgUQeQAzBvll1XjBpUofoVHcNU_AoCN8TOFVGEBEcXPVfPr4_r1DAw9nntVQMA-3jG8UzROd7PwBx0vRp75DoOQnlbprLVClYEThusrq29BDwYtRv-4OasRiI-4MirN8IRBkuIsfiN5tZRU27sU4G3VGK3xY6dguFRTX9zxOHfMaGzjgccDBswSjFsQqpyljNm4uvbR0-GjHYIKCIx15NCqAlN8Ra7e8ekm68RWRHf_BGzgIrYgYBostlT-38xF44IO3KZEheOSMVHMXzbOi-cLevOa4orxrL-1d7S2UbZ3-tubva_LB9-2jt7tl-1V2vu4A6VlZ63sfDpaWf_VXS07m2Vnvey0y85yv717sPf-cPttb2O31_3Rf9Mt258Puytle69sbxx-_9L_sH_VmG1EM-G0qT9eYrbswE9M6ILMo0FhY-52wvMm94LUYYXju1aQ4XqDwkqTFLdPTLzE5xb1c_C9Xd_Jc-CynWvG5PyL-eK6MQVDru0XeQr6MrcIcA9Q5roOy5vNJLMKdsN4UPVM_LLaoSb-W6Pd_G8Nt4xzeGtUk5O3jcnFhaXiDrjri-lddSH8BocL0Uo
linkProvider Colorado Alliance of Research Libraries
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=%E9%A3%BC%E6%96%99%E3%81%AE%E9%AD%9A%E7%B2%89%E4%BB%A3%E6%9B%BF%E3%81%8C2%E7%A8%AE%E3%81%AE%E3%83%96%E3%83%AA%E6%8A%97%E8%8F%8C%E3%83%9A%E3%83%97%E3%83%81%E3%83%89%E9%81%BA%E4%BC%9D%E5%AD%90%E7%99%BA%E7%8F%BE%E9%87%8F%E3%81%AB%E5%8F%8A%E3%81%BC%E3%81%99%E5%BD%B1%E9%9F%BF&rft.jtitle=%E6%B0%B4%E7%94%A3%E5%A2%97%E6%AE%96&rft.au=%E6%9D%BE%E6%9C%AC%2C+%E6%9A%A2%E4%B9%85&rft.au=%E6%B3%89%E6%B0%B4%2C+%E5%BD%A9%E8%8A%B1&rft.au=%E6%B7%B1%E7%94%B0%2C+%E9%99%BD%E4%B9%85&rft.date=2024&rft.pub=%E6%97%A5%E6%9C%AC%E6%B0%B4%E7%94%A3%E5%A2%97%E6%AE%96%E5%AD%A6%E4%BC%9A&rft.issn=0371-4217&rft.eissn=2185-0194&rft.volume=72&rft.issue=1&rft.spage=9&rft.epage=20&rft_id=info:doi/10.11233%2Faquaculturesci.72.9&rft.externalDocID=article_aquaculturesci_72_1_72_9_article_char_ja
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0371-4217&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0371-4217&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0371-4217&client=summon